
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Pinning is Sinning: Towards Upgrading Maven Dependencies
using Crowdsourced Tests

ANONYMOUS AUTHOR(S)

Library dependencies in software ecosystems play a crucial role in the development of software. As newer
releases of these libraries are published, developers may opt to pin their dependencies to a particular version
rather than upgrading to more recent ones. While pinning may have benefits in ensuring reproducible builds
and avoiding breaking changes, it bears larger risks in using outdated dependencies that may contain bugs and
security vulnerabilities. To understand the frequency and consequences of dependency pinning, we conduct
an empirical study to show that over 60% of consumers of popular Maven libraries pin their dependencies to
outdated versions, some over a year old. Furthermore, these pinned versions often miss out on security fixes;
we find that upgrading dependencies to the latest minor or patch version is 3.45x as likely to reduce security
vulnerabilities rather than introduce new ones.

Consumers, however, may lack the confidence in performing an upgrade due to the possibility of introducing
a breaking change. Thus, we propose Unpin, a novel tool that computes a confidence score for a dependency
upgrade by leveraging crowdsourced tests of peer projects and simulating the upgrade for them. It can provide
35–100% more coverage of a dependency using only 1–5 additional test suites, compared that of a single
consumer test suite. Our evaluation on real-world pins to the top 500 popular libraries in Maven shows that
Unpin (with a minimum confidence score of 5) can provide confidence to over 3,000 consumers to safely
perform an upgrade that reduces security vulnerabilities.

ACM Reference Format:
Anonymous Author(s). 2018. Pinning is Sinning: Towards UpgradingMavenDependencies using Crowdsourced
Tests. 1, 1 (September 2018), 20 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Modern software heavily relies on third-party libraries. Usage of these libraries can reduce software
development time and cost by reusing existing functionality of software [1, 2]. This process has been
integrated into many software ecosystems—such as Apache Maven for Java, NPM for JavaScript,
and PIP for Python—for which building and installing library dependencies is a natural step for the
software developer. The Maven Central Repository demonstrates the popularity of this practice
for Java applications, with an index containing over 10 million Java packages [3]. An example
of the dependency network of the Maven gemini library is shown in Figure 1, showing many
dependencies than can span multiple edges.
While the dependence on third-party libraries assists the development of new software ap-

plications, managing these dependencies can be challenging. New releases of dependencies are
constantly published to the ecosystem and developers must decide whether to upgrade them to a
newer version. However, software bugs or unexpected behavior—referred to as breaking changes—
can be introduced in these new versions [4–6]. Third-party library maintainers sometimes even
knowingly deploy breaking changes due to the build up of technical debt and pressure to release
new functionality [7].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/9-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

gemini@3.3.0

reflections@0.9.9

jackson-databind@
2.10.0

guava@15.0

kyro@5.0.0

reflectasm@
1.11.18

java-image-scaling
@0.8.6

jhlabs-filters
@2.0.235

objenesis@
2.6

minlog@1.3.1

Other
Dependencies

Fig. 1. Example dependency tree of the Maven library gemini@3.3.0. A directed arrow denotes a depen-
dency. Each node consists of a library name and version. gemini@3.3.0 contains a direct dependency to
jackson-databind@2.10.0 and an indirect dependency to guava@15.0.

Thus, upgrading a dependency can always be risky for consumers of these libraries. They must
be wary of the possibility that their project might break or even that new security vulnerabilities
are introduced [8]. This encourages developers to pin their dependencies to a specific version and
avoiding performing dependency upgrades in their projects.
Dependency pinning may avoid this issue entirely and has certain benefits such as providing

reproducible builds [9]; however, it bears a significant cost! New library versions often include new
features, performance improvements, and crucial security patches. The high-profile 2017 Equifax
data breach, in which a vulnerability in the open source Apache Struts library was exploited for
leaking sensitive data of over 140 million consumers, demonstrates this drawback of pinning [10].
A patch for Apache Struts was available, but was not adopted by Equifax for over two months.
Nowadays, tools like Dependabot and others [11–14] help warn developers about known security
vulnerabilities in outdated dependencies, though this approach is reactive rather than proactive.

So, we ask: is dependency pinning actually worth it? We first conduct an empirical study
on the Maven ecosystem to understand the how common the practice is and its broader security
implications.We use the Open Source Insights dataset [15], recently published by Google, containing
data about dependencies, consumers, and security vulnerabilities for over 569,000 Maven packages.
We construct datasets from a targeted sample of the most popular Maven libraries from the Open
Source Insights dataset and find that over one-third of these libraries contain at least one pin to their
dependencies. Even further, over 60% of the consumers of the most popular libraries are pinned to
outdated dependencies.

Given that dependency pinning is a fairly common practice in Maven, we next explore its security
risks. Previous studies have shown that systems with outdated dependencies are four times likely
to exhibit security vulnerabilities than those with fresh dependencies [16]. In our own historical
analysis on pinned dependencies, we find that libraries would have been 3.45 times as likely to
fix security vulnerabilities than introduce new ones had they unpinned their dependencies when
publishing their library. This corresponds to over 22,000 consumers in our dataset that potentially
could have fixed vulnerabilities (a majority of which having high or critical severity levels) had
they been able to perform these upgrades. Hence, we conclude that pinning is sinning, as developers
are far likelier to fix vulnerabilities by upgrading their outdated dependencies.
While the overall security benefit of unpinning is clear, we must still consider the aspect of

evaluating whether performing a specific upgrade is safe. Our key insight is that the test suites of
other consumers in the ecosystem can help validate the upgrade and provide more confidence to
the developer. To this end, we propose Unpin, a tool that crowdsources test suites of peer consumers

, Vol. 1, No. 1, Article . Publication date: September 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 3

of the dependency to evaluate the safety of an upgrade. We specifically leverage the existence of
test-JARs in the Maven ecosystem, which contain projects’ compiled tests, in order to streamline
the execution of consumer test suites. By executing these additional test suites against both the
pinned version and upgraded version, we can characterize the impact of the upgrade on multiple
projects. Unpin reports a confidence score of a particular upgrade determined by the number of
consumer test suites that are able to successfully run when using the upgraded dependency version.
Is Unpin able to provide confidence to the consumers that could have performed vulnerability-

fixing upgrades? In an evaluation of Unpin on our dataset of these upgrades, we first find that
crowdsourcing just five consumer test suites is able to provide an average of almost 100% improve-
ment in test coverage of a dependency over that of a single consumer. Unpin is able to provide a
confidence score of at least five to over 3,000 consumers (15%) performing an upgrade that would
fix security vulnerabilities.

In summary, this paper asks the following research questions:

RQ1: To what extent are libraries in the Maven ecosystem pinning dependencies?
RQ2: What is the security impact of pinning dependencies?
RQ3: How much can crowdsourced test suites improve coverage of the pinned dependency?
RQ4: Can crowdsourced test suites help validate vulnerability-fixing upgrades?

Our contributions are as follows:

(1) We conduct an empirical study on the Apache Maven ecosystem using the Open Source
Insights dataset to determine the frequency and security impact of dependency pinning
relating to the top 500 most-popular libraries.

(2) We present a tool Unpin that crowdsources consumer test suites to better characterize
the safety of an upgrade across the network and provide confidence to developers when
unpinning dependencies.

(3) We evaluate our tool on vulnerability-fixing upgrades in Maven libraries and find that Unpin
is able to validate upgrades to over 3,000 consumers with a confidence score of 5.

2 BACKGROUND AND TERMINOLOGY
This section provides terminology that will be used in the paper and background on Maven, a
software packaging ecosystem for Java.

2.1 Software Ecosystems
A software ecosystem is a collection of software libraries, each denoted by a name and a version
number. We denote a library as 𝐿@𝑉 , where 𝐿 refers to the library name and 𝑉 refers to version.
We define L as the set of all libraries in a particular software ecosystem, such as Maven for Java.

A library 𝐿@𝑉 may contain a direct dependency to another library 𝐿′@𝑉 ′, usually specified
in a configuration file for the build system. Throughout this paper, we refer to a dependency as
the specific package as pulled by the build system after dependency resolution. The dependency
resolution process will resolve any wildcard versions or ranges specified in the configuration file
and fetch one single version of the dependency. We refer to 𝐿′@𝑉 ′ as a direct dependency and
𝐿@𝑉 as a direct consumer. A shorthand notation for describing this direct dependency relation
is 𝐿@𝑉 → 𝐿′@𝑉 ′. An example of a direct dependency relation can be seen in Figure 1 between
gemini@3.3.0 and jackson-databind@2.10.0. We define the entire dependency graph G as
the set of all direct dependency relations (edges), and naturally define the functions directDeps
and directConsumers to identify a direct dependency on 𝐷 or a direct consumer 𝐶 respectively as

, Vol. 1, No. 1, Article . Publication date: September 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

follows:
directDeps(𝐿@𝑉) = {𝐷@𝑉 ′ ∈ L | (𝐿@𝑉 → 𝐷@𝑉 ′) ∈ G}

directConsumers(𝐿@𝑉) = {𝐶@𝑉 ′′ ∈ L | (𝐶@𝑉 ′′ → 𝐿@𝑉) ∈ G}
A library dependency can also span multiple dependency edges, such as between gemini@3.3.0
and guava@15.0 in Figure 1. To account for these dependency relations, we define the function
allDeps on 𝐿@𝑉 to return the transitive closure of directDeps applied to 𝐿@𝑉 . We similarly define
allConsumers as the transitive closure of directConsumers. These functions return the set of all
dependencies and consumers of 𝐿@𝑉 , respectively, regardless of the number of edges. We addition-
ally introduce the functions indirectDeps and indirectConsumers to return the sets of dependencies
and consumers that are not direct.

A library has the option of upgrading a dependency from one version to a newer one. Continuing
our example from Figure 1, the library gemini@3.3.0 could upgrade jackson-databind from
version 2.10.0 to 2.11.0. We denote an upgrade as the pair ⟨𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽⟩.

2.2 Semantic Versioning
When performing a dependency upgrade, it’s crucial for consumers to understand the types of
changes being introduced in a new dependency version and whether it is backwards compatible.
One practice used in many software ecosystems is semantic versioning [17], which defines a set of
rules for assigning version numbers to new releases of libraries. When using semantic versioning, a
version 𝑉 is structured into the format major.minor.patch[-tag]. For example, the dependency
jackson-databind in Figure 1 has version 2.10.0, where 2 is the major version, 1 is the minor
version, and 10 is the patch version. For notational purposes, we define the functions major, minor,
and patch to return the corresponding version numbers of a particular version 𝑉 . This separation
of version numbers also defines a total ordering between versions that compares major, minor, and
patch versions numerically from left to right. We use this comparison logic throughout the paper
when ordering versions (e.g. 𝑉 𝛽 > 𝑉 𝛼).

Semantic versioning is used to characterize the types of version upgrades in terms of backwards
compatibility. Generally, version upgrades that include backwards incompatible changes increment
the major version, whereas upgrades that do not break existing functionality are limited to minor
or patch version increments. This allows library developers to notify consumers about the specific
versions that introduce potential breaking changes, and consumers can choose which versions to
adopt through a set of dependency constraints. Throughout this paper, we refer to minor and patch
version upgrades as semver-compatible, as they should have the assurance of being backwards
compatible.
Semantic versioning encourages consumers to perform semver-compatible upgrades on their

dependencies since there should be no risk of introducing breaking changes. This can be as simple
as specifying a version range for a dependency that freezes the major version, such as [1.0.0,
2.0.0). However, semantic versioning is only a policy and is unenforceable throughout a software
community; oftentimes new minor and patch versions may not respect the policy, resulting in
unexpected breaking changes and upset consumers [18, 19]. These upgrades can even introduce
accidental bugs or new security vulnerabilities, which may convince consumers to avoid semver-
compatible upgrades entirely and decide to pin their dependencies to a single version.

2.3 Dependency Pinning
The practice of specifying a single version of a dependency rather than a range is referred to
as dependency pinning. Figure 2 shows a pin in our previous example from the Maven library
gemini@3.3.0 to an outdated version of the jackson-databind library. When gemini@3.3.0

, Vol. 1, No. 1, Article . Publication date: September 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 5

jackson-databind@2.10.0 jackson-databind@2.11.0 gemini@3.3.0

pinned dependency

Publish
date

upgrade?

D@V𝛼 D@V𝛽 C@V

Fig. 2. Example of a direct pin between the consumer gemini@3.3.0 and jackson-databind@2.10.0.
Since gemini@3.3.0 is a direct consumer of jackson-databind@2.10.0 and a later version of the library
2.11.0 was published before the consumer, this is a pin.

was published, it contained a dependency to jackson-databind@2.10.0 even though the later
version jackson-databind@2.11.0 was available. Although there was as an option to perform a
semver-compatible upgrade, the consumer still kept the outdated version of the dependency.
We formally define a pin as follows: given a dependency graph G, a pin is the tuple of three

libraries ⟨𝐶@𝑉 , 𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽⟩ ∈ L × L × L for which the following conditions hold:

(1) 𝐷@𝑉 𝛼 ∈ allDeps(𝐶@𝑉).
(2) publishTime(𝑉 𝛼) < publishTime(𝑉 𝛽) < publishTime(𝑉).
(3) (major(𝑉 𝛽) = major(𝑉 𝛼)) ∧ (𝑉 𝛽 > 𝑉 𝛼)
The first condition specifies that a 𝐷@𝑉 𝛼 is a dependency of consumer 𝐶@𝑉 . Next, the publish

time of each of these libraries is compared: if the newer dependency version 𝑉 𝛽 was published
before the consumer version𝑉 , then consumer𝐶@𝑉 is pinned to dependency 𝐷@𝑉 𝛼 , as it chose to
use an outdated dependency version rather than performing the upgrade to𝑉 𝛽 . The final condition
incorporates semantic versioning guidelines and checks that the upgrade from 𝑉 𝛼 to 𝑉 𝛽 is a
semver-compatible upgrade by ensuring major version equality and using the semantic versioning
ordering. This filters out anymajor version upgrades due to their potential of introducing backwards
incompatible changes.

We can further classify a pin as either direct or indirect depending on the nature of the dependency
between 𝐶@𝑉 and 𝐷@𝑉 𝛼 . ⟨𝐶@𝑉 , 𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽⟩ is a direct pin if 𝐷@𝑉 𝛼 ∈ directDeps(𝐶@𝑉)
and a indirect pin if 𝐷@𝑉 𝛼 ∈ indirectDeps(𝐶@𝑉). To unpin a direct pin, a consumer would simply
need to update the version of the dependency to the newer version in the project configuration
file. Unpinning indirect pins, on the other hand, requires the consumer to explicitly override the
indirect dependency relation to 𝐷@𝑉 𝛼 by introducing a new direct dependency relation to 𝐷@𝑉 𝛽 .
Unpinning a dependency involves deciding to perform the upgrade from 𝑉 𝛼 (pinned version)

to 𝑉 𝛽 (upgrade version) and is not necessarily a straightforward decision. Consumers may be
apprehensive of incorporating changes that break their project or even introduce new security
vulnerabilities. However, keeping the dependencies pinned has a risk of missing out on crucial
patches for vulnerabilities that exist in the pinned version, usually fixed in minor and patch version
upgrades.Without a way of characterizing the impact of these upgrades beyond semantic versioning
guidelines, developers must make a difficult decision when deciding to perform these dependency
upgrades.

, Vol. 1, No. 1, Article . Publication date: September 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.17</version>

...

</project>

<dependencies>

<dependency>

<groupId>ant</groupId>

<artifactId>ant-nodeps</artifactId>

<version>1.6.5</version>

</dependency>

</dependencies>

Fig. 3. Excerpt of the POM file for Apache log4j:log4j@1.2.17 that lists a dependency on
ant:ant-nodeps@1.6.5.

2.4 Apache Maven
For our empirical study and tool, we focused on the popular Apache Maven software ecosystem

for Java projects. Maven provides support for building, managing, and deploying Java packages.
Java files in Maven projects are usually organized into two directories: src/main and src/test
files containing source and test code respectively.

Maven libraries can be uploaded as packages to the Maven Central Repository [3], which contains
over 10 million indexed packages. Each package a binary JAR file of the compiled source Java
classes (corresponding to the files in src/main) and a Project Object Model (POM) file. The POM
file is an XML file that contains metadata, dependencies, and additional configurations of the
project. An excerpt of a POM file for the Apache Log4j project can be seen in Figure 3. Libraries
names are uniquely identified by the <groupId> and <artifactId>, and the version is specified
under the <version> tag. Each dependency is listed under the <dependencies> tag by similarly
specifying the groupId, artifactId, and version. A dependency version can be specified in the
POM file with a single value or a version range (ref. Section 2.2). When the project builds, the
Maven build system will parse the POM file, resolve a single version for each dependency, and
fetch the corresponding JAR and POM files from the Maven Central Repository.

To run the unit and integration tests in the src/test directory of a Maven project, a developer
can run the mvn test command in the project’s source repository. For outsiders, replicating this
process would require finding the source repository to clone, switching to the specific version
of the library, and compiling the Java files in src/main and src/test before executing the tests.
On the other hand, Maven projects have the option of uploading a test-JAR to the Central Maven
Repository when deployed. A key insight is that a test-JAR can be used to directly run the unit and
integration tests of a package without requiring access to the project’s source repository. Test-JARs
are a unique aspect of the Maven that provides access to many additional package tests in the
ecosystem.

3 PINNING IN MAVEN
Using the Open Source Insights dataset published by Google [15], we conducted an analysis on
a snapshot of the Maven ecosystem to measure the frequency and impact of pinning. We take a
snapshot of the entire Maven dependency network on May 22, 2023 that includes dependencies and
consumers (both direct and indirect) of∼567,000Maven libraries. This snapshot contains 235,959,564
dependency edges, of which 45,997,607 (19.5%) are direct dependencies. Ignoring different versions,
there are a total of 188,927 dependencies and 377,551 consumers.

We chose to use this dataset because it includes the dependency versions that result fromMaven’s
dependency resolution process rather than the syntax declared in the POM files of the projects.
This provides resolution for version ranges or keywords in the POM file (e.g., 2.0+ or LATEST) and

, Vol. 1, No. 1, Article . Publication date: September 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 7

𝛼
𝛼 𝛽

𝛼 𝛽

Fig. 4. Construction of pin datasets D1 and D2. A set of anchors of selected from the Open Source Insights
dataset based on popularity (number of consumers). D1 is constructed by extracting pins from anchors to
their dependencies, andD2 is constructed by extracting pins from the consumer of the anchors to the anchors
themselves.

also solves version conflicts for duplicate indirect dependencies (i.e., diamonds in the dependency
graph). By using the final resolved versions rather than declared versions, we can find explicit
instances of pinning that occur in the ecosystem. To our knowledge, Open Source Insights is the
most up-to-date dataset for Maven at the time of writing1.

3.1 RQ1: Frequency of Pinning
In RQ1, we focus on how common the practice of dependency pinning is in the Maven ecosystem.
Since the entire Maven ecosystem is too large to analyze in its entirety, we target our analysis to a
sample of the Maven ecosystem relating to the top 500 most popular libraries (as defined by the
number of consumers) due to their overall impact on the network. In particular, we analyze (1) pins
of these most popular libraries to their dependencies and (2) pins of consumers to this set of the
most popular libraries. We create two sub-questions for RQ1 accordingly:
RQ1.1: Do the most popular Maven libraries pin dependencies?
RQ1.2: Do consumers pin to the most popular Maven libraries?

For each sub-question, we construct a dataset of pins (as defined in Section 2.3) using the process
shown in Figure 4. Each dataset uses the top 500 most popular libraries (referred to as anchors) as
a starting point to find pins across the network. The anchors are created by selecting the library
names (e.g., 𝐿1, 𝐿2, . . . , 𝐿500) with the highest number of consumers across all versions, as seen in
Step 1 of Figure 4.

3.1.1 RQ1.1: Do the top 500 most popular Maven libraries pin dependencies? The datasetD1 consists
of pins from the top 500 libraries to their dependencies. We first walk through an example with the
Apache avro library to outline howD1 is constructed. The avro library is included as an anchor due
to its high number of consumers. We first select the latest minor version of avro (1.11.0) as a recent
version of this anchor. Next, we find all dependencies (direct and indirect) of avro@1.11.0 and
checkwhether each one constitutes a pin. One such dependency is jackson-databind@2.12.5, for
which there aremultiple versions higher than 2.12.5 published before the date when avro@1.11.0
was released. Since there may be many potential upgrade versions (e.g. 2.12.6, 2.12.7, etc.),
1We originally used Libraries.io [20] for our dataset, which stores the dependency version as the syntax of the version listed
in the POM files, but chose Open Source Insights due to its explicit versioning resolution and more up to date dataset.

, Vol. 1, No. 1, Article . Publication date: September 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

Table 1. Pinning statistics for the top 500 most popular libraries to their dependencies, separated by direct
and indirect relation. The number of consumers corresponds to the number of anchors that contain direct
and indirect dependencies (many anchors have no dependencies to other libraries). Out of these consumers,
87 (34%) contain at least one direct pin and 73 (54%) contain at least one indirect pin. There are a total of 892
direct dependencies and 987 indirect dependencies across these consumers, of which 181 (20%) of them are
direct pins and 364 (37%) are indirect pins.

Anchors Anchors with ≥ 1 pin Dependencies Pins
Direct 253 87 892 181
Indirect 134 73 987 364

0 500 1000 1500 2000
Days behind Upgrade Version

0

10

20

30

40

50

60

70

Nu
m

be
r o

f P
in

s

Age of Directly Pinned Versions
 (publish time)

0 5 10 15 20 25 30
Versions behind Upgrade Version

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f P
in

s

Age of Directly Pinned Versions
 (number of versions)

0 1000 2000 3000 4000 5000
Days behind Upgrade Version

0

20

40

60

80

100

120

Nu
m

be
r o

f P
in

s

Age of Indirectly Pinned Versions
 (publish time)

0 10 20 30 40 50 60 70
Versions behind Upgrade Version

0

20

40

60

80

100

Nu
m

be
r o

f P
in

s

Age of Indirectly Pinned Versions
 (number of versions)

Fig. 5. Histograms showing the age of direct and indirect pinned dependencies for each Dataset D1. Direct
pins are down in dark blue and indirect pins are show in light green. X-axis displays difference in publish
time or version and Y-axis displays the number of pins. Values to the right represent pinned versions that are
more outdated compared to the upgrade version.

we order all upgrade versions using semantic versioning and select the highest. Thus, the pin
⟨avro@1.11.0, jackson-databind@2.12.5, jackson-databind@2.13.0⟩ is added to D1.
Formally, we describe the process of constructing D1 as follows. We first use semantic

versioning to select the latest minor version of each anchor and can denote these libraries
𝐿1@𝑉 1, 𝐿2@𝑉 2, . . . , 𝐿500@𝑉 500. Next, we fetch all transitive dependencies (ref. Section 2.1) of all of
the versioned anchors (Step 2 in Figure 4):

anchorDeps =
⋃

𝐿𝑖@𝑉 𝑖

allDeps(𝐿𝑖@𝑉 𝑗)}

Finally, for each dependency 𝐷 𝑗@𝑉 𝛼 ∈ anchorDeps, we query Open Source Insights to find the
latest upgrade version of the dependency (𝑉 𝛽) that was published before the consumer 𝐿𝑖@𝑉 𝑖 (Step
3 of Figure 4). We then add the pin ⟨𝐿𝑖@𝑉 𝑖 , 𝐷 𝑗@𝑉 𝛼 , 𝐷 𝑗@𝑉 𝛽⟩ to set D1.

Table 1 provides statistics about the number of anchors, dependencies, and pins in D1. We first
note that out of the 500 anchors, only 253 contain at least one direct dependency and 134 contain at
least one indirect dependency. A large percentage (34.4%) of the anchors with direct dependencies
contain at least 1 direct pin, and over half of the 134 anchors with indirect dependencies have at
least 1 indirect pin. This is a significant portion of popular libraries that pin dependencies, which
has downstream effects on the ecosystem: consumers that depend on these popular libraries are
indirectly pinned to an outdated library!
For each of these pins, we would also like to measure how outdated the pinned version 𝑉 𝛼 is

compared to the upgraded version available 𝑉 𝛽 . Figure 5 visualizes the difference in between the
pinned version and the upgrade version in D1 by (1) publish time, and (2) number of versions
released. Direct pins are shown in dark blue, and indirect pins are shown in light green. We observe
that direct pins include a pinned version outdated by a median of 232 days and 2 versions behind
the upgrade version; however, the majority of pinned versions are only 1 version behind. Indirect

, Vol. 1, No. 1, Article . Publication date: September 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 9

pins follow a similar trend with slightly more outdated pinned versions, having a median of 353
days and 3 versions behind the upgrade version.

○ Finding #1: A significant percentage of popular Maven libraries contain at least one pin to a
dependency. However, the majority these dependencies are only moderately outdated by 1-2
versions.

3.1.2 RQ1.2: Do consumers pin to the top 500 most popular Maven libraries? We similarly con-
struct dataset D2 to comprise of pins from other libraries to the anchors. Once again, we
can walk through an example of extracting a pin for D2. We refer back to Figure 2 with
the dependency from gemini@3.3.0 to jackson-databind@2.10.0. As jackson-databind
is one of our anchors, we would like to extract pins from consumers to its outdated versions.
We begin by querying Open Source Insights to find all the consumers of jackson-databind,
across all versions of the library. One such consumer is gemini—although there are many
versions of this library, we select latest minor version (3.3.0) to find an up-to-date ver-
sion. Since there are multiple versions of jackson-databind higher than version 2.10.0
published earlier than gemini@3.3.0, we select the highest one (2.11.0) and add the pin
⟨gemini@3.3.0, jackson-databind@2.10.0, jackson-databind@2.11.0⟩ to dataset D2.
The process of creating the entire dataset is formally described as follows: we first query the

Open Source Insights network to find all consumers of the anchors libraries across all versions of
each anchor, i.e.

anchorConsumers =
⋃

𝐿𝑖@𝑉 𝑗 ∈ L ∧
𝐿𝑖 ∈anchors

allConsumers(𝐿𝑖@𝑉 𝑗)}

We then query Open Source Insights to select the latest minor version of each consumer in
anchorConsumers. For each consumer 𝐶@𝑉 , we find all of its dependencies to the anchor libraries
and check whether any of them are pinned. Given a dependency to an anchor 𝐿𝑖@𝑉 𝛼 , we select
the highest version 𝑉 𝛽 that was published before 𝐶@𝑉 and add the corresponding pin to D2.
Table 2 shows the statistics of the number of consumers, dependencies, and upgrades in D2.

Note that the total number of dependencies and consumers is much larger than D1. This is due to
the selection of anchors; since the anchors are the top 500 most popular libraries by the count of
the consumers who use them, it is natural that this dataset is much larger overall.

Interestingly, we find that more than 60% the direct consumers of the anchors contain at least 1
direct pin, and over 80% of the indirect consumers contain at least one indirect pin. Furthermore,
we can see from Figure 6 that the dependency versions are outdated by a median of 370 days (7
versions) and 427 days (9 versions) for direct and indirect pins respectively. We see that pinning to
the top 500 libraries is extremely common and features fairly outdated pinned versions! Note that
there are a significantly smaller number of potential upgrades in D2 (as defined in Section 2.1) than
there are pinning consumers, suggesting that many consumers share the same pins to the anchors.

○ Finding #2: Pinning to the most popular libraries in Maven is a very common practice,
with over 60% of consumers containing at least one direct pin, and 80% containing at least one
indirect pin. The pinned versions of these libraries are fairly outdated, about 7 versions behind
the upgrade version for direct pins and 9 versions for indirect pins.

, Vol. 1, No. 1, Article . Publication date: September 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

Table 2. Pinning statistics for consumers of the top 500 most popular libraries, categorized as either direct or
indirect. Out of these consumers, 148,811 (61%) contain at least one direct pin and 184,281 (83%) contain at
least one indirect pin. We see that many consumers share the same pins, as there are only 46,365 potential
upgrades in the set of direct pins and 76,317 potential upgrades in the set of indirect pins.

Consumers Consumers with ≥ 1 pin Dependencies Potential Upgrades
Direct 244,819 148,811 717,705 46,365
Indirect 221,744 184,281 2,778,165 76,317

0 1000 2000 3000 4000 5000 6000
Days behind Upgrade Version

0

500

1000

1500

2000

2500

Nu
m

be
r o

f P
in

s

Age of Directly Pinned Versions
 (publish time)

100 101 102 103

Versions behind Upgrade Version
0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f P
in

s

Age of Directly Pinned Versions
 (number of versions)

0 1000 2000 3000 4000 5000 6000
Days behind Upgrade Version

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f P
in

s

Age of Indirectly Pinned Versions
 (publish time)

100 101 102 103

Versions behind Upgrade Version
0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f P
in

s

Age of Indirectly Pinned Versions
 (number of versions)

Fig. 6. Histograms showing the age of direct and indirect pinned dependencies for Dataset 2. Direct pins
are down in dark blue and indirect pins are show in light green. X-axis displays age and Y-axis displays the
number of pins. Log scale for X-axis is used for version plots.

3.2 RQ2: Security Impact of Unpinning
Older versions of libraries frequently contain known vulnerabilities that are patched in newer
minor and patch releases. These security issues are tracked and disclosed publicly using Common
Vulnerabilities and Exposures (CVEs) and other reporting mechanisms. The public Open Source
Vulnerabilities (OSV) [21] database maintained by Google is a central database for CVEs and is
used as a data source for the Open Source Insights dataset, which stored metadata about each
vulnerability as an advisory. Each security advisory includes information about the packages and
specific versions affected by the vulnerability.

From RQ1, we see that a very large percentage of consumers depend on an outdated version of
the most popular libraries in the Maven ecosystem. While this provides a picture of how frequent
dependency pinning occurs in the Maven ecosystem, we are interested in measuring the security
impact of these pins: specifically, are developers avoiding introducing new security vulnerabilities
into their dependencies by pinning, or they missing out on important security patches? Tools such
as dependabot utilize these vulnerability databases to notify developers of vulnerable dependencies;
however, this data has not been used to identify the historical security impact of pinned dependencies
in Maven.

To perform this analysis, we compare the number of security vulnerabilities affecting the pinned
version and upgrade version of the direct pins in dataset D2. Of the 46,365 potential upgrades
(Table 2), we find that 40,462 result in no difference in vulnerabilities, 4,576 (9.9%) upgrades reduce
the number of security vulnerabilities, and 1,327 (2.9%) introduce new ones. Thus, performing
a semver-compatible upgrade of a pinned dependency in D2 is 3.45× as likely to fix vulnerable
dependencies than introduce new ones. Figure 7 displays the histogram of the differences in
vulnerabilities between the versions, excluding the upgrades having no security impact for the
sake of visualization. The majority of upgrades reduce the number of security vulnerabilities by 1,
but certain upgrades can fix up to as many as 66 vulnerabilities! Across all of these upgrades, the
number of vulnerabilities would be reduced by 20,825.

, Vol. 1, No. 1, Article . Publication date: September 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 11

20 0 20 40 60
Difference in Vulnerabilities

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f U
pg

ra
de

s

Total:
4,576

Total:
1,327

Vulnerability Impact when Upgrading

Fig. 7. Histogram visualizing the security advisory impact of upgrading directly pinned dependencies in
D2. X-axis values in green include upgrades that reduce the number of vulnerabilities, whereas values in
red increase the number of vulnerabilities (zero excluded for sake of visualization). In total, there are 4,576
upgrades that decrease vulnerabilities and 1,327 upgrades that increase vulnerabilities. Across all upgrades,
the number of vulnerabilities reduce by 20,825.

○ Finding #3: Performing a semver-compatible upgrade on a pinned version of a popular library
is 3.45× as likely to reduce security vulnerabilities than introduce new ones. Thus, pinning is
sinning.

4 SOLUTION APPROACH: UNPIN
In answering RQ1 and RQ2, we have identified that dependency pinning to the most popular
libraries in Maven is fairly common and has high security risks. However, developers of these
libraries may be cautious to perform these upgrades. To unpin a dependency, a consumer needs to
be confident that the changes in the dependency upgrade are safe to introduce. One method would
be to execute their test suites against the new version of the dependency. However, even if the tests
pass, they may not be comprehensive enough to thoroughly test behaviors of the new dependency
version. We address this concern by proposing a tool called Unpin that calculates a confidence
score of a given upgrade by crowdsourcing test suites of other consumers of the pinned dependency.
Our key insight is that consumer test suites can exercise a more thorough set of behaviors of the
dependency; if multiple consumers’ tests pass on both the pinned and upgraded version, a developer
can more confidently unpin their dependency.
Unpin takes an upgrade (𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽) and a minimum confidence setting K as input and

validates the safety of that upgrade. The tool follows the procedure outlined in Figure 8:
(1) Query Open Source Insights to find directConsumers(𝐷@𝑉 𝛼).
(2) Pull the consumer test-JARs from the Maven Central Repository for each 𝐶@𝑉 ∈

directConsumers. Note that not all consumers have published test-JARs; thus, we construct
a set testableConsumers = {𝐶@𝑉 ∈ directConsumers(𝐷@𝑉 𝛼) | testJarExists(𝐶@𝑉)}

(3) For each consumer 𝐶@𝑉 ∈ testableConsumers, execute the tests when using 𝐷@𝑉 𝛼 and
𝐷@𝑉 𝛽 as dependencies (see Section 4.1).

(4) Compare the test outcomes for each version and calculate a confidence for the upgrade
⟨𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽⟩. If the confidence is at least K , validate the upgrade (see Section 4.3).

, Vol. 1, No. 1, Article . Publication date: September 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

𝛼 𝛽

𝛼

𝛽

Confidence
Score

Unsafe

Fig. 8. Overview of Unpin. The direct consumers of 𝐷@𝑉𝛼 are fetched from Open Source Insights and their
test suites are executed using test-JARs. Then, the version is set to 𝑉 𝛽 and the consumer test suites are
executed on this version. Finally, the test outcomes are compared—either the upgrade is safe and Unpin
returns a confidence equal to the number of test suites executed, or the upgrade is unsafe, returning zero
confidence.

Steps (1) and (2) query the Open Source Insights dataset and the Maven Central Repository
respectively to fetch test-JARs of the direct consumers of the pinned version. In the following
sections, we go into detail to describe Steps (3) and (4).

4.1 Executing Crowdsourced Consumer Test Suites
One option to execute a consumer test suite is to download and build the source code of the
repository and invoke the tests by running mvn test. Unfortunately, the source code for these
consumers may not be publicly available. Additionally, resolving the specific version 𝑉 in the
repository can be a nontrivial task, as version naming conventions may differ between the source
code and the Maven package.
The strategy we chose was to leverage the Maven Central Repository for test-JARs of the

consumer, which contains compiled classes of the test files. Test-JARs are unique to the Maven
ecosystem and provide a streamlined approach of fetching and executing project test suites. While
test-JARs are optional to upload to the Maven Central Repository and do not exist for certain
consumers, this approach still provides a straightforward method of crowdsourcing test suites.
Among the consumers in D2 with direct pins, we found that about 12% of projects had uploaded
test-JARs to the Maven Central Repository; while we would have liked this percentage to be higher,
this is still a significant number of tests available for Unpin to use to test upgrades.
To walk through this process, we refer to our original example of a pinned dependency from

gemini@3.3.0 to jackson-databind@2.10.0. The consumer gemini@3.3.0 would use Unpin to
test the upgrade of jackson-databind from 2.10.0 to 2.11.0. Unpin first finds all consumers
of the pinned dependency jackson-databind@2.10.0 and pulls all consumer test-JARs that are
available on the Maven Central Repository. In the case that there are multiple consumers with the
same library name, we select the highest version.
For each of the consumers, Unpin first executes each of the test suites against the pinned

dependency version of jackson-databind (2.10.0). Some tests may produce non-deterministic

, Vol. 1, No. 1, Article . Publication date: September 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 13

outcomes due to flakiness [22, 23]. Unpin executes each test with 𝑟 = 5 repetitions to account for
this flakiness. Since the tests are executed directly from the test-JARs, it also is possible that tests
may have errors or fail due to missing resources. We save the test outcomes produced by Maven of
each of the consumer tests to a database.

Next, Unpin upgrades the dependency version of jackson-databind to 2.11.0 for each of the
consumer test suites. Once again, the execution of the test suites are repeated five times, and the
test outcomes are saved.

4.2 RQ3: Coverage Improvement of Crowdsourced Consumer Test Suites

2 3 4 5 6 7 8 9
Number of Consumer Test Suites

0

50

100

150

200

250

300

350

400

Lin
e

Co
ve

ra
ge

 Im
pr

ov
em

en
t

of
 D

ep
en

de
nc

y

Consumer Test Suite Coverage
 of commons-io@2.4

Fig. 9. Coverage improvement of consumer
test suites for commons-io@2.4.

A natural question, however, is whether using consumer
test suites has any advantages in terms of exercising
code, such as improved coverage, of the dependency? To
characterize the coverage benefit of crowdsourced con-
sumer test suites, we use the Jacoco library [24] to collect
the coverage of the dependency classes only. Figure 9
shows the coverage improvement of consumer test suites
for one pinned dependency commons-io@2.4—we found
nine consumers of this dependency whose test JARs we
could execute. From the figure, we see that the union
of the coverage of these nine test suites provided over
a 400% increase in coverage of commons-io@2.4 than if
we just executed a single consumer’s test suite only (on
average). To understand how coverage increases with
the number of crowdsourced test suites, we calculate the
union of the dependency-coverage for each value 𝑛 below 9 by randomly sampling a subset of 𝑛
consumer test suites without replacement (up to 50 times) and calculating the average.
Generalizing this methodology, Figure 10 shows the average coverage improvement, across all

popular libraries, with respect to the number of consumer test suites. With just a single additional
consumer test suite, we can achieve an average of 40% additional coverage of the dependency; with
four additional test suites, this number rises to almost 100%! The improvement saturates around 25
test suites, with about 300% improvement in coverage. Overall, we find that the crowdsourced test
suites from Unpin are able to gain a significant coverage boost in the pinned dependency over a
single consumer, thus providing more confidence in an upgrade.

4.3 Computing Confidence Score
We next explain how Unpin uses the outcomes from the consumer test suites to validate an upgrade.
Based on the results of the crowdsourced test suites, Unpin calculates a confidence score for each
upgrade. We walk through our example of upgrading jackson-databind from version 2.10.0 to
2.11.0, with a minimum confidence setting of K = 5. Unpin fetches and executes seven consumer
test suites on the pinned version 2.10.0 and the upgrade version 2.11.0. Tests that are flaky or
fail in the pinned version are filtered out, and all remaining test outcomes are compared between
versions. Each of the seven consumers vote on whether the upgrade is safe or unsafe. If all consumer
tests pass on both dependency versions, then the consumer votes safe; otherwise, there exists a
test that passes in the pinned version but fails in the upgrade version, indicating the presence of a
breaking change. Since all seven consumers vote safe, the confidence returned by Unpin is seven.
Since seven is higher than K , Unpin validates this upgrade.

, Vol. 1, No. 1, Article . Publication date: September 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

2 5 10 15 20 25 30 35
Number of Consumer Test Suites

0

50

100

150

200

250

300

350

Lin
e

Co
ve

ra
ge

 Im
pr

ov
em

en
t

of
 D

ep
en

de
nc

y
Consumer Test Suite Coverage

Fig. 10. Average coverage improvement achieved by Unpin over an average consumer test suite (higher
is better). X-axis values include the number of crowdsourced consumer test suites, and Y-values show the
geometric mean line-coverage improvement across all libraries. As low as four additional crowdsourced test
suites can achieve almost 100% more line coverage than a single one.

More formally, we determine confidence as follows. We define outcome as a function that takes
in a test method 𝑡 , a consumer𝐶@𝑉 , and a dependency 𝐷@𝑉 . From Section 4.1, each test has been
executed with 𝑟 repetitions.

outcome(𝑡,𝐶@𝑉 , 𝐷@𝑉) =


pass if 𝑟 repetitions pass
fail if 𝑟 repetitions fail or error
flaky otherwise

Each consumer provides a vote for whether the upgrade is safe or unsafe depending on the results
of its test suite. If all passing tests with dependency version 𝑉 𝛼 also pass when the dependency
version is upgraded to 𝑉 𝛽 , then the consumer vote is safe. If there is a test that consistently passes
with 𝑉 𝛼 but always fails with 𝑉 𝛽 , then the consumer vote is unsafe—this condition indicates that
the upgrade has broken some functionality. In all other cases (e.g., all tests were flaky or failed in
𝑉 𝛼), the consumer vote is ignored.

vote(𝐶@𝑉 , 𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽) =



safe if ∀ 𝑡 ∈ consumerTests(𝐶@𝑉) :
outcome(𝑡,𝐶@𝑉 , 𝐷@𝑉 𝛼) = pass =⇒
outcome(𝑡,𝐶@𝑉 , 𝐷@𝑉 𝛽) = pass

unsafe ∃ 𝑡 ∈ consumerTests(𝐶@𝑉) :
outcome(𝑡,𝐶@𝑉 , 𝐷@𝑉 𝛼) = pass ∧
outcome(𝑡,𝐶@𝑉 , 𝐷@𝑉 𝛽) = fail

ignore otherwise

where consumerTests(𝐶@𝑉) returns the set of all test methods in the test-JAR for 𝐶@𝑉 .
Finally, Unpin accumulates all votes of the consumers to calculate a confidence for the upgrade. If

any consumers vote that the upgrade is unsafe, then the confidence is 0, since the upgrade appears
to be a breaking change. Otherwise, the confidence is equal to the number of consumers that voted
safe—higher is better. We formally define the confidence as follows:

, Vol. 1, No. 1, Article . Publication date: September 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 15

Table 3. Unpin confidence on upgrades of direct pins D2 that reduce security vulnerabilities and the number
of consumers affected. Out of the 4,576 upgrades, Unpin was able to crowdsource at least one test-JAR for
29% (upgrades with zero and positive confidence). Unpin returns a positive confidence for 9,194 (41%) of all
consumers that could have performed these upgrades.

Confidence returned by Unpin Consumers Upgrades
Positive (upgrade is safe) 9,194 (41%) 850 (19%)
Zero (upgrade is unsafe) 3,134 (14%) 458 (10%)
Untested (upgrade had no test-JARs) 10,119 (45%) 3,268 (71%)
Total 22,447 (100%) 4,576 (100%)

confidence(𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽) =



0 if ∃𝐶@𝑉 ∈ testableConsumers(𝐷@𝑉 𝛼) :
vote(𝐶@𝑉 , 𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽) = unsafe∑︁

𝐶𝑖@𝑉 𝑖 ∈
testableConsumers(𝐷@𝑉𝛼)

[vote(𝐶𝑖@𝑉 𝑖 , 𝐷@𝑉 𝛼 , 𝐷@𝑉 𝛽) = safe] otherwise

The confidence score calculated by Unpin reports the number of consumers that had consis-
tent test results between dependency versions. In our example from earlier of the upgrade from
jackson-databind from 2.10.0 to 2.11.0, Unpin reports a confidence score of 7, since there were
7 consumer test suites executed. This score does not provide any guarantees about the safety of the
upgrade—it is possible that the seven consumer test suites did not catch a breaking change. However,
each additional consumer test suite provides more confidence, and the interpretation of the score is
dependent on the preferences of the consumers performing the upgrade. The confidence scores
reported Unpin will also increase with more testable consumers and more available test-JARs.

4.4 RQ4: Providing Confidence in Upgrades
A key question is whether Unpin can provide confidence to consumers of libraries to unpin one or
more of their dependencies to upgrade them. We answer this RQ by running Unpin on the upgrades
of direct pins in D2 that fix security vulnerabilities.

Table 3 reports the distribution of upgrades that had a positive and zero confidence returned by
Unpin. About 29% of all upgrades were able to be tested with at least 1 test-JAR crowdsourced from
the Maven Central Repository. Out of these tested upgrades, Unpin reported a positive confidence
score for 850 (65%). This corresponds to 9,194 (41%) of all consumers that could have performed
these upgrades.

We are also interested in how the minimum confidence settingK for Unpin relates to the number
of consumers for which Unpin would validate the upgrade. Figure 11 visualizes these consumers
against values of K . The X-axis value of 1 is excluded for the sake of visualization and because
we believe a minimum of 1 is too low. Overall, we find that with a minimum confidence setting
of 5, over 3,000 (14%) of consumers would be able to validate their upgrade using Unpin. If the
minimum confidence setting was set to 2, it would increase the number of consumers to almost
6,000. This is a significant number of consumers that would be encouraged to upgrade their pinned
dependencies with additional consumer test suites validating the upgrade. We believe this number
can be increased even further with more Maven libraries adopting the practice of publishing their
test-JARs.

, Vol. 1, No. 1, Article . Publication date: September 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

2 5 10 15 20 25
K (minimum confidence setting of Unpin)

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f C
on

su
m

er
s

Consumers validated with safe upgrades

Fig. 11. Number of consumers with safe upgrades with respect to confidence score returned by Unpin. X-axis
displays the minimum confidence score (1 is excluded for visualization), and Y-values are the number of
consumers that would be able to unpin given the confidence value. Over 3,000 consumers could validate their
upgrade using a minimum confidence setting of 5, and almost 6,000 using a minimum of 2.

5 DISCUSSION
In this section, we discuss our findings and their broader implications to practitioners and re-
searchers.

Dependency pinning is common in the Maven ecosystem. From our analysis of dependency pinning
in Maven, we find that pinning is fairly common for consumers of popular libraries, moreso than
for popular libraries themselves. This is likely because popular libraries have more maintainers
that can manage dependencies and keep them up to date. Additionally, it can be challenging for
consumers to stay up to date with the frequent releases of popular libraries. While our analysis
focuses on explicit instances of dependency pinning in the network, our findings are consistent
with the studies evaluating the "freshness" of dependencies showing how developers are reluctant
to upgrade their dependencies [16, 25–27].

Pinning is sinning. Our historical analysis of pinned dependencies to popular libraries shows that
upgrading pinned version would have had a large security impact across the ecosystem. Although
consumers may be inclined to stick to a consistent dependency version, they are far likelier to fix
critical security vulnerabilities by keeping their dependencies up to date. This aligns with previous
studies demonstrating correlations between outdated dependencies and vulnerabilities [28]. While
we understand the benefits in fixing dependency versions, we hope this security implication
encourages developers to adopt a more progressive strategy of upgrading dependencies.

Coverage of a dependency improves with crowdsourced test suites. It is challenging for a consumer
to evaluate how their project will be affected by a dependency upgrade. While their own test suite
may be able to catch certain issues, we see that crowdsourcing test suites from other consumers can
provide a substantial boost in coverage. These test suites may be exercising different parts of the
dependency, and a consumer may only care about a certain functionality that they use; nevertheless,
we feel each additional test suite can only help in increasing confidence for an upgrade. Prior work
has shown the potential for consumer tests [29–32] in achieving reasonable coverage and fault
detection capabilities in dependencies.

, Vol. 1, No. 1, Article . Publication date: September 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 17

Ecosystems should encourage developers to publicize executable test suites. Our tool Unpin leverages
the published test-JARs in the Central Maven Repository. We believe this is a great practice to
improve the overall testing infrastructure in the ecosystem and hope to see it more widely adopted
by other libraries. In particular, the existence of test-JARs in the Central Maven Repository allows
Unpin to streamline the automatic execution of these tests. This infrastructure is extremely valuable
and hope to see it in other ecosystems beyond Maven/Java as well. Our approach of using external
test suites to validate dependency changes is similar to how monorepo environments operate in
large companies [33] in which tests from external modules are selected and run to validate code
changes. Unpin applies this idea to the much broader open source world through the execution of
consumer test suites, essentially providing something akin to a "monorepo for the masses".

6 THREATS TO VALIDITY
Threats to Construct Validity. The validation performed by Unpin on an upgrade is dependent on

the consumer tests that are executed. If there is any noise or nondeterminism affecting the test
outcome, then Unpin may improperly classify certain upgrades as safe or unsafe. This can arise
from flakiness [22, 34, 35] in tests. We aim to mitigate this threat through repeated execution of
the tests five times (Section 4.1) on both the pinned version and the upgrade version. Unpin only
compares tests that produce a consistent passing or failing outcome across all repetitions, which
should filter out a majority of flaky tests.

Threats to Internal Validity. Unpin’s approach of crowdsourcing test suites and validating upgrades
assumes that consumer test suites are a valuable source testing a dependency. Since library test
suites are generally focused on testing functionality of the library and not the dependencies, it
may be the case that consumer tests do not exercise much behavior of dependencies. Nevertheless,
Unpin executes as many consumer test suites as are available in the Maven Central Repository. We
hope that publishing test-JARs becomes a more widely adopted practice in Maven, as this would
increase the overall coverage of the dependency.

Threats to External Validity. We specifically focused on the Maven ecosystem for our analysis,
and we do not know if our conclusions about dependency pinning and its security implications will
generalize to other ecosystems. Additionally, Unpin depends on a central repository of crowdsourced
tests that can be automatically executed; this data may not always be available in other platforms.

7 RELATEDWORK
7.1 Dependencies in Software Ecosystems
The challenge of evolving and maintaining software in ecosystems is a well-researched topic [36–
39]. Bavota et al. [40] explore the Apache ecosystem and highlight the exponential growth in the
number dependencies. They also found that application developers are reluctant to upgrade their
dependencies due to the risk of API breaking changes. This issue is further quantified by Kula et
al. (2015) [25], sampling 4.6K Github projects and finding that more than 80 percent of them have
outdated Maven dependencies. Additional studies [41] validate this finding for other ecosystems
such as NPM by measuring technical lag in dependencies. Dietrich et al. [27] demonstrate that
85.7% of Maven libraries specify a fixed version in dependencies—our definition of pinning is more
precise as it compares the resolved version to the latest dependency version available at the time
of publishing. Nevertheless, our analysis of our pin datasets confirms that outdated dependencies
exist in a large percentage of libraries even in recent snapshots of the Maven ecosystem.

Prior work [42, 43] has also measured the impact of vulnerabilities in dependencies in the NPM
ecosystem. Kula et al. (2018) [26] extend their work to study the extent to which developers upgrade

, Vol. 1, No. 1, Article . Publication date: September 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

their dependencies and the reasons behind their reluctancy [26]. In a survey of developers, they find
that 69% claimed to be unaware of vulnerabilities in their dependencies. Automated dependency
management bots like Dependabot [11] are able to address this issue by automatically notifying
and creating pull requests for developers to upgrade their vulnerable dependencies. Analysis on
Dependabot in practice shows that it does reduce technical lag in projects; however, its compatibility
score does not reduce developer suspicion when performing upgrades [13]. Our approach can
provide additional confidence through the execution of consumer test suites.

7.2 Detection of Breaking Changes
Prior research has studied [5, 7, 44] and developed numerous techniques for the detection of
breaking changes [6, 45, 46] that can alert developers of unsafe upgrades.

Static Analysis Based Techniques. Themajority of existing literature focuses primarily on detection
of API changes between library versions. Raemaekers et al. [4] utlilize the tool clirr to detect API
binary incompatibilities of Java code through static analysis. APIDiff is a tool developed by Brito
et al. [45] that focuses on syntactic changes between Java library versions that classifies a code
change as breaking or non-breaking. The more recent tool Sembid [47] locates breaking changes in
Maven libraries by analyzing call chains and measuring semantic differences between versions.

Dynamic Analysis Based Techniques. Mostafa et al. [48] study the prevalence of behavioral
backwards incompatibilities (BBIs) in consecutive versions of Java libraries. They find that 14 of
the 15 subjects featured these types of breaking changes, with the majority of them undocumented.
Prior work has also shown the effectiveness of using consumer tests to detect breaking changes
and BBIs [29, 31, 47]. We highlight the main differences from our work: first, we provide a novel
definition of explicit dependency pins and present a thorough empirical study on pinning in
the Maven network, which is unique among related work. We also use a dataset that resolves
dependency versions for old libraries at the time they were built; this is contrast to prior work that
uses heuristics to resolves dependencies in older releases [31]. We focus on the security impact of
pinning dependencies and validating upgrades from pins, which is unique among related work.
Finally, we use crowdsourced tests from JARs published to the Maven central repository, and thus
do not rely on identifying source code repositories like prior work [29–31].

8 CONCLUSION
In this work, we focused on the issue of dependency pinning in the Maven ecosystem.We conducted
an analysis on a recent snapshot of the Maven ecosystem and identified that a significant portion of
consumers are pinned to older versions of the most popular libraries. We also show that consumers
are far more likely to fix existing security vulnerabilities than introduce new ones if they were
to upgrade their outdated dependencies. To encourage developers to upgrade dependencies, we
propose Unpin, a tool to execute crowdsourced consumer test suites in order to validate an upgrade.
We find that Unpin is able to provide validation to over 19% of all consumers in our dataset
performing upgrades that would have fixed known vulnerabilities. We argue that more libraries and
package management platforms should adopt the practice of publishing executable test binaries
which would allow further development of tools that leverage information about dependency usage
via crowdsourced tests.

9 DATA AVAILABILITY
We have included evaluation data in the anonymized repository at: https://doi.org/10.5281/zenodo.
8384971. This data contains dependency data for each of the datasets, coverage data for consumer
test suites, and test outcome data from Unpin.

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.5281/zenodo.8384971
https://doi.org/10.5281/zenodo.8384971

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Pinning is Sinning: Towards Upgrading Maven Dependencies using Crowdsourced Tests 19

REFERENCES
[1] C. R. de Souza and D. F. Redmiles, “An empirical study of software developers’ management of dependencies and

changes,” in Proceedings of the 30th international conference on Software engineering, 2008, pp. 241–250.
[2] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software dependencies, work dependencies, and their impact

on failures,” IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 864–878, 2009.
[3] “The maven central repository,” https://mvnrepository.com/repos/central, accessed: 2022-11-21.
[4] S. Raemaekers, A. Van Deursen, and J. Visser, “Semantic versioning versus breaking changes: A study of the maven

repository,” in 2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation. IEEE, 2014,
pp. 215–224.

[5] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact analysis of api breaking changes: A large-scale
study,” in 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2017, pp. 138–147.

[6] L. Ochoa, T. Degueule, J.-R. Falleri, and J. Vinju, “Breaking bad? semantic versioning and impact of breaking changes
in maven central: An external and differentiated replication study,” Empirical Software Engineering, vol. 27, no. 3, p. 61,
2022.

[7] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api: cost negotiation and community values in
three software ecosystems,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 109–120.

[8] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and mitigation of vulnerabilities in open source dependen-
cies,” Empirical Software Engineering, vol. 25, no. 5, pp. 3175–3215, 2020.

[9] S. Mukherjee, A. Almanza, and C. Rubio-González, “Fixing dependency errors for python build reproducibility,” in
Proceedings of the 30th ACM SIGSOFT international symposium on software testing and analysis, 2021, pp. 439–451.

[10] M. Corporation, “CVE-2017-5638,” https://www.cve.org/CVERecord?id=CVE-2017-5638, 2017. [Online]. Available:
https://www.cve.org/CVERecord?id=CVE-2017-5638

[11] Github, “Dependabot,” https://docs.github.com/en/code-security/dependabot/working-with-dependabot/automating-
dependabot-with-github-actions#about-dependabot-and-github-actions, 2021, retrieved June 1, 2023.

[12] M. Alfadel, D. E. Costa, E. Shihab, and M. Mkhallalati, “On the use of dependabot security pull requests,” in 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). IEEE, 2021, pp. 254–265.

[13] R. He, H. He, Y. Zhang, and M. Zhou, “Automating dependency updates in practice: An exploratory study on github
dependabot,” IEEE Transactions on Software Engineering, 2023.

[14] H. Mohayeji, A. Agaronian, E. Constantinou, N. Zannone, and A. Serebrenik, “Investigating the resolution of vulnerable
dependencies with dependabot security updates,” in 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). IEEE, 2023, pp. 234–246.

[15] Google, “Open Source Insights,” https://deps.dev/, 2023, retrieved June 1, 2023.
[16] J. Cox, E. Bouwers, M. Van Eekelen, and J. Visser, “Measuring dependency freshness in software systems,” in 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 109–118.
[17] T. Preston-Werner, “Semantic versioning 2.0.0,” https://semver.org/spec/v2.0.0.html, 2013.
[18] A. Decan and T. Mens, “What do package dependencies tell us about semantic versioning?” IEEE Transactions on

Software Engineering, vol. PP, pp. 1–1, 05 2019.
[19] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the javascript package ecosystem,” in Proceedings

of the 13th International Conference on Mining Software Repositories, 2016, pp. 351–361.
[20] Libraries.io, “Libraries.io Open Data,” https://libraries.io/data, 2020, retrieved June 1, 2023.
[21] Google, “Open Source Vulnerabilities,” https://osv.dev/, retrieved June 1, 2023.
[22] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of flaky tests,” in Proceedings of the 22nd ACM

SIGSOFT international symposium on foundations of software engineering, 2014, pp. 643–653.
[23] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding flaky tests: The developer’s perspective,” in

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 830–840.

[24] M. R. Hoffmann, B. Janiczak, and E. Mandrikov, “Eclemma-jacoco Java code coverage library,” 2011.
[25] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a library: A study of the latency to adopt the latest maven

release,” in 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). IEEE,
2015, pp. 520–524.

[26] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers update their library dependencies? an
empirical study on the impact of security advisories on library migration,” Empirical Software Engineering, vol. 23, pp.
384–417, 2018.

[27] J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “Dependency versioning in the wild,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 2019, pp. 349–359.

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://mvnrepository.com/repos/central
https://www.cve.org/CVERecord?id=CVE-2017-5638
https://docs.github.com/en/code-security/dependabot/working-with-dependabot/automating-dependabot-with-github-actions#about-dependabot-and-github-actions
https://docs.github.com/en/code-security/dependabot/working-with-dependabot/automating-dependabot-with-github-actions#about-dependabot-and-github-actions
https://deps.dev/
https://semver.org/spec/v2.0.0.html
https://libraries.io/data
https://osv.dev/

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

[28] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci, “Vulnerable open source dependencies: Counting
those that matter,” in Proceedings of the 12th ACM/IEEE international symposium on empirical software engineering and
measurement, 2018, pp. 1–10.

[29] G. Mezzetti, A. Møller, and M. T. Torp, “Type regression testing to detect breaking changes in node. js libraries,” in
32nd european conference on object-oriented programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[30] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral backward incompatibilities via cross-project testing
and analysis,” in Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp. 112–124.

[31] S. Mujahid, R. Abdalkareem, E. Shihab, and S. McIntosh, “Using others’ tests to identify breaking updates,” in Proceedings
of the 17th International Conference on Mining Software Repositories, 2020, pp. 466–476.

[32] J. Hejderup and G. Gousios, “Can we trust tests to automate dependency updates? a case study of Java projects,”
Journal of Systems and Software, vol. 183, p. 111097, 2022.

[33] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco, “Taming google-scale continuous
testing,” in 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). IEEE, 2017, pp. 233–242.

[34] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on the lifecycle of flaky tests,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp. 1471–1482.

[35] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A survey of flaky tests,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 1, pp. 1–74, 2021.

[36] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types of software evolution and software maintenance,”
Journal of software maintenance and evolution: Research and Practice, vol. 13, no. 1, pp. 3–30, 2001.

[37] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri, “Challenges in software evolution,”
in Eighth International Workshop on Principles of Software Evolution (IWPSE’05). IEEE, 2005, pp. 13–22.

[38] K. Manikas and K. M. Hansen, “Software ecosystems–a systematic literature review,” Journal of Systems and Software,
vol. 86, no. 5, pp. 1294–1306, 2013.

[39] R. Cox, “Surviving software dependencies,” Communications of the ACM, vol. 62, no. 9, pp. 36–43, 2019.
[40] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How the apache community upgrades dependencies:

an evolutionary study,” Empirical Software Engineering, vol. 20, no. 5, pp. 1275–1317, 2015.
[41] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. González-Barahona, “An empirical analysis of technical lag in

npm package dependencies,” in International Conference on Software Reuse. Springer, 2018, pp. 95–110.
[42] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying the vulnerability propagation and its evolution via

dependency trees in the npm ecosystem,” in Proceedings of the 44th International Conference on Software Engineering,
2022, pp. 672–684.

[43] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of dependency network evolution in seven software
packaging ecosystems,” Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, 2019.

[44] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how to make breaking changes: Policies and practices in
18 open source software ecosystems,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 30,
no. 4, pp. 1–56, 2021.

[45] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Apidiff: Detecting api breaking changes,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 507–511.

[46] X. Du and J. Ma, “Aexpy: Detecting api breaking changes in python packages,” in 2022 IEEE 33rd International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 2022, pp. 470–481.

[47] L. Zhang, C. Liu, Z. Xu, S. Chen, L. Fan, B. Chen, and Y. Liu, “Has my release disobeyed semantic versioning? static
detection based on semantic differencing,” in Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–12.

[48] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: a study on behavioral backward incompatibilities of Java
software libraries,” in Proceedings of the 26th ACM SIGSOFT international symposium on software testing and analysis,
2017, pp. 215–225.

, Vol. 1, No. 1, Article . Publication date: September 2018.

	Abstract
	1 Introduction
	2 Background and Terminology
	2.1 Software Ecosystems
	2.2 Semantic Versioning
	2.3 Dependency Pinning
	2.4 Apache Maven

	3 Pinning in Maven
	3.1 RQ1: Frequency of Pinning
	3.2 RQ2: Security Impact of Unpinning

	4 Solution Approach: Unpin
	4.1 Executing Crowdsourced Consumer Test Suites
	4.2 RQ3: Coverage Improvement of Crowdsourced Consumer Test Suites
	4.3 Computing Confidence Score
	4.4 RQ4: Providing Confidence in Upgrades

	5 Discussion
	6 Threats to Validity
	7 Related Work
	7.1 Dependencies in Software Ecosystems
	7.2 Detection of Breaking Changes

	8 Conclusion
	9 Data Availability
	References

