
Guiding Greybox Fuzzing with Mutation Testing
Vasudev Vikram

Carnegie Mellon University
Pittsburgh, PA, USA
vasumv@cmu.edu

Isabella Laybourn
Carnegie Mellon University

Pittsburgh, PA, USA
ilaybour@andrew.cmu.edu

Ao Li
Carnegie Mellon University

Pittsburgh, PA, USA
aoli@cmu.edu

Nicole Nair
Swarthmore College
Swarthmore, PA, USA

nnair1@swarthmore.edu

Kelton OBrien
University of Minnesota
Minneapolis, MN, USA
obri0707@umn.edu

Rafaello Sanna
University of Rochester
Rochester, NY, USA

rsanna@u.rochester.edu

Rohan Padhye
Carnegie Mellon University

Pittsburgh, PA, USA
rohanpadhye@cmu.edu

ABSTRACT
Greybox fuzzing and mutation testing are two popular but mostly
independent fields of software testing research that have so far
had limited overlap. Greybox fuzzing, generally geared towards
searching for new bugs, predominantly uses code coverage for
selecting inputs to save. Mutation testing is primarily used as a
stronger alternative to code coverage in assessing the quality of
regression tests; the idea is to evaluate tests for their ability to
identify artificially injected faults in the target program. But what
if we wanted to use greybox fuzzing to synthesize high-quality
regression tests?

In this paper, we develop and evaluate Mu2, a Java-based frame-
work for incorporating mutation analysis in the greybox fuzzing
loop, with the goal of producing a test-input corpus with a high mu-
tation score. Mu2 makes use of a differential oracle for identifying
inputs that exercise interesting program behavior without causing
crashes. This paper describes several dynamic optimizations imple-
mented in Mu2 to overcome the high cost of performing mutation
analysis with every fuzzer-generated input. These optimizations
introduce trade-offs in fuzzing throughput and mutation killing
ability, which we evaluate empirically on five real-world Java bench-
marks. Overall, variants of Mu2 are able to synthesize test-input
corpora with a higher mutation score than state-of-the-art Java
fuzzer Zest.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
fuzz testing, mutation testing, test generation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598107

ACM Reference Format:
Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien,
Rafaello Sanna, and Rohan Padhye. 2023. Guiding Greybox Fuzzing with
Mutation Testing. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023,
Seattle, WA, United States. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3597926.3598107

1 INTRODUCTION
Greybox fuzzing [9, 49, 52, 80] and coverage-guided property test-
ing [44, 58] have become increasingly popular for automated testing.
Their key idea is to evolve a corpus of test inputs via an evolutionary
search that maximizes code coverage: in each iteration, a new input
is synthesized by randomly mutating an existing input from the cor-
pus. The mutated input is added to the corpus if the corresponding
execution of the test program increases code coverage.

Fuzzing is traditionally used to discover inputs that crash pro-
grams and reveal security vulnerabilities [5, 11, 14, 20, 25, 42, 50,
54, 59, 68]. In the absence of new bugs, fuzzers are evaluated based
on code coverage achieved during the fuzzing campaign [10, 48].
However, in the vast majority of fuzzing research, the end goal is
to find bugs in the moment [42]; not much attention is paid to the
inputs saved along the way.

In this paper, we explicitly focus on the quality of the test-input
corpus produced at the end of a fuzzing campaign. Such a corpus
can be used for continuous regression testing during subsequent
program development. This practice is recommended by Google’s
OSS-Fuzz [28], and is already adopted by some mature projects. For
example, in SQLite, “Historical test cases from AFL, OSS Fuzz, and
dbsqlfuzz are collected [...] and then rerun by the fuzzcheck utility
program whenever one runs make test” [71]. Similarly, OpenSSL
uses several distinct fuzzer-generated corpora and their correspond-
ing fuzz drivers for continuous testing [72]. Even though these test
corpora are used for regression testing, the only metric being tar-
geted by conventional greybox fuzzers is code coverage. However,
coverage alone is not the necessarily the strongest predictor of fault
detection ability [15, 36].

Now, the technique of mutation testing [19], which evaluates the
ability of tests to catch artificially injected bugs (a.k.a. mutation

https://doi.org/10.1145/3597926.3598107
https://doi.org/10.1145/3597926.3598107
https://doi.org/10.1145/3597926.3598107

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello Sanna, and Rohan Padhye

Execute

Save?
Execution feedback

No

Yes

Add
Input’

Initial
Input

Input
Input

Input

Seeds

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒New
mutants
killed?

Input
Pick

<foo></foo>

Input’Random
Mutation

<woo>?</oo>
Program’

Program’
Program’

(Program
Mutants)

Figure 1: A mutation-analysis-guided fuzzing loop. Each
fuzzer-generated input is run through a set of program mu-
tants to compute a mutation score. Inputs are saved to the
corpus if they improve mutation score.

analysis), has shown promise as an adequacy criteria for improving
test-suite effectiveness [15, 39, 64]. A test is said to kill a program
mutant if it fails when executed on the mutant, whereas mutants
that fail no tests are said to survive. A goal of mutation testing is to
produce a test corpus that has a high mutation score, defined as the
fraction of all mutants that are killed by the test suite. A natural
question thus arises: can we use mutation scores to guide the fuzzer?

In this paper, we develop and evaluate a framework for incor-
porating mutation analysis in the fuzzing loop, building on our
previous work which first proposed the approach [46]. The idea is
as follows (see Fig. 1): after a new input is synthesized by a fuzzer
via random mutation of a previously saved input, it is evaluated by
executing a set of mutants of the program under test. If the new in-
put kills any previously surviving program mutant, then it is added
to the corpus. In this process, we distinguish between input muta-
tions (e.g., randomly setting input bits or fields to zero) and program
mutations (e.g., replacing the expression a+b with a-b in the tar-
get’s source code). Our Java-based implementation, calledMu2—for
Mutation-Based Greybox Fuzzing + Mutation Testing—incorporates
program mutations from the popular PIT toolkit [17] into a custom
guidance in the JQF [58] greybox fuzzing framework. Mu2 is open
source and available at: https://github.com/cmu-pasta/mu2.

This paper details two main aspects of Mu2’s design. First, with
a conventional fuzzing oracle that only identifies program crashes
or aborts, many inputs will be discarded for not killing any mu-
tant even though they exercise interesting program functionality.
For mutation testing to be useful, we need a stronger test oracle.
Mu2 incorporates the idea of differential mutation testing, which
validates the output of program execution. Second, evaluating each
fuzzer-generated input on the set of all program mutants is pro-
hibitively expensive, thereby reducing fuzzing throughput. Mu2
prunes the set of mutants to run at each fuzzing iteration using
dynamic analysis of the original program’s execution in two ways:
(a) sound optimizations that prune mutants which cannot be killed
by a given input, and (b) aggressive optimizations that select only a
bounded subset of candidate mutants to run in each iteration.

We evaluate Mu2 on five real-world Java targets using state-of-
the-art greybox fuzzer Zest [59], which is also built on top of the JQF
framework, as a baseline. We also empirically evaluate 7 variants of

Mu2 employing different strategies for improving performance. Our
combined evaluation represents 21,600 CPU-hours (2.5 CPU-years)
of fuzzing campaigns.

Our results indicate: (1) an optimized version of Mu2 has an
overall improvement of up to 20% in mutation scores across five
benchmarks (5% increase on average); (2) mutation-analysis feed-
back generates test-input corpora with higher reliability of killing
nontrivial mutants compared to coverage-only feedback; (3) the
differential testing oracle is significantly valuable to Mu2, detecting
30% more mutants on average than a conventional fuzzing oracle;

To summarize, this paper makes the following contributions:
(1) We investigate the various challenges of combining muta-

tion testing and greybox fuzzing, and propose solution ap-
proaches to include in our framework.

(2) We incorporate differential testing as an oracle for mutation
testing in the fuzzing loop and find that it significantly im-
proves the strength of the fuzzing oracle.

(3) We employ multiple sound performance optimizations that
enable mutation analysis to run in the fuzzing loop, and
propose aggressive optimizations that are able to scale Mu2
to larger programs.

(4) We present an empirical evaluation of Mu2 on 5 real-world
Java benchmarks, with Zest [59] as a baseline.

(5) We open-source Mu2 for use by practitioners and to enable
reproduction and extension by researchers.

2 BACKGROUND
2.1 Greybox Fuzzing and Corpus Generation
Coverage-guided greybox fuzzing (CGF) is a technique for auto-
matic test-input generation using lightweight program instrumenta-
tion. It was first popularized by open-source tools such as AFL [80]
and libFuzzer [49], but has since been heavily studied and variously
extended in academic research [5, 9, 14, 20, 25, 44, 50, 52, 58, 59].

Algorithm 1 describes the basic greybox fuzzing algorithm, with
many details elided. First, a corpus of test inputs is initialized with a
set of one ormore seed inputs (Line 2), which could be user-provided
or randomly generated. Then, in each iteration of the fuzzing loop
(Line 3), a new input is synthesized by first picking an existing
input 𝑥 from the corpus (Line 4) and then performing random mu-
tations to produce 𝑥 ′ (Line 5). The heuristics to sample an input
(PickInput) vary, and often use some sort of energy schedule [9].
Some inputs may also be marked as favored, and receive higher
energy than other inputs. The randommutations performed on 𝑥 to
get 𝑥 ′ (MutateInput) also vary depending on the known format of
inputs (e.g., bitflips for binary data or random keyword insertion for
text files). Structure-aware fuzzing tools [4, 44, 59, 65, 75] perform
mutations that preserve the syntax or type safety of inputs, e.g. by
mutating parse trees using a grammar or by mutating pseudoran-
dom choices backing a Quickcheck-like [16] generator function.
The program under test 𝑃 is then executed with the new input 𝑥 ′,
using lightweight instrumentation to collect code coverage during
execution. The function coverage referenced in Algorithm 1 re-
turns a set of program locations executed when processing an input.
If the run of 𝑥 ′ causes new code to be covered (Line 8), then 𝑥 ′ is
saved to the corpus (Line 9); thus, 𝑥 ′ may be used as the basis for
further input mutation in subsequent iterations of the fuzzing loop.

https://github.com/cmu-pasta/mu2

Guiding Greybox Fuzzing with Mutation Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Algorithm 1 Coverage-guided greybox fuzzing
1: procedure CGF(Program 𝑃 , Set of inputs seeds, Budget𝑇)
2: corpus← seeds ⊲ Initialize saved inputs
3: repeat ⊲ Fuzzing loop
4: 𝑥 ← PickInput(corpus) ⊲ Sample using heuristics
5: 𝑥 ′ ← MutateInput(𝑥) ⊲ Synthesize new input
6: if running 𝑃 (𝑥 ′) leads to a crash then
7: raise 𝑥 ′ ⊲ Bug found!
8: if coverage(𝑃, 𝑥 ′) ⊈ ⋃

𝑥 ∈corpus coverage(𝑃, 𝑥) then
9: corpus← corpus ∪ 𝑥 ′

10: until budget𝑇
11: return corpus ⊲ Final corpus

If the execution of any synthesized input 𝑥 ′ causes the program to
crash, then a bug is reported (Line 7). The fuzzing loop continues
until a user-provided resource budget 𝑇 runs out (Line 10), where
this budget may be in terms of the number of fuzzing trials (i.e.,
iterations of the fuzzing loop) or in terms of wall-clock time. The
corpus of fuzzer-synthesized test inputs is finally returned (Line 11)
and may be used either as a regression test suite, for seeding future
fuzzing campaigns, or for other applications [28, 55, 71, 72, 74]. The
quality of the final test-input corpus is often evaluated using code
coverage [10, 42], though mutation scores—which we describe in
the next section—have also been used [74].

2.2 Mutation Testing
Mutation testing (also known as a mutation analysis) is a method-
ology for assessing the adequacy of a set of tests using artificially
injected “bugs”, or program mutants [19, 37]. In assessing test ade-
quacy [27], we are given a program 𝑃 and a suite of passing tests
𝑋 . The goal is to evaluate the quality of 𝑋 by computing a score
that grows monotonically [78] with additions to the set 𝑋 . Code
coverage is an example of a test adequacy criteria.

In mutation testing, a set of program mutants, sayMutants(𝑃),
is first generated. Each mutant 𝑃 ′ ∈ Mutants(𝑃) is a program that
differs from 𝑃 in a very small way. Most commonly, mutations are
replacements of program expressions. For example, an expression
a+b at line 42 in 𝑃 may be replaced with the expression a-b. We
can use the notation ⟨𝑃,a+b,a-b, 42⟩ to refer to this mutation. For
purposes of this paper, we use the notation:

𝑃 ′ = ⟨𝑃, 𝑒, 𝑒′, 𝑛⟩
to refer to a program mutant 𝑃 ′ as a modification of program 𝑃

where expression 𝑒 is replaced with 𝑒′ at program location 𝑛. The
main idea is that a program mutation simulates a simple program-
mer error or an artificially injected “bug”.

The test suite𝑋 is then run on each mutant 𝑃 ′. If some test 𝑥 ∈ 𝑋
fails when run on mutant 𝑃 ′, then the mutant 𝑃 ′ is said to be killed,
which we denote as Kills(𝑃 ′, 𝑥). If the test suite𝑋 still passes, then
the mutant 𝑃 ′ is said to survive.

Ideally, we want our tests to be able to identify “bugs” and so we
hope to have tests that fail on each mutant 𝑃 ′. So, the adequacy of
test suite 𝑋 is defined by the mutation score, which is computed as
the fraction of mutants killed: | {𝑃

′∈Mutants(𝑃) |∃𝑥∈𝑋 :kills(𝑃 ′,𝑥) } |
|Mutants(𝑃) | .

In general, a mutation score of 100% is rarely achievable because
some mutants 𝑃 ′ may actually be equivalent to 𝑃—that is, ∀𝑥 :

𝑃 (𝑥) = 𝑃 ′ (𝑥). Similar to code coverage—where 100% may not be
achievable due to unreachable code—the best use of the adequacy
score is as a relative measurement rather than an absolute one.

One of the most mature and actively developed mutation testing
frameworks, PIT [17], targets Java programs by mutating JVM
bytecode. PIT’s default mutation operators include:
• Conditional boundary mutator (e.g., a<b to a<=b))
• Increments mutator (e.g., a++ to a--)
• Invert negatives (e.g., -a to a)
• Math mutators (e.g., a+b to a*b)
• Negate conditionals (e.g., a==b to a!=b)
• Return values mutator (e.g., replacing operands in return
statements with a constant such as null, 0, 1, false, etc.
depending on type).

3 MUTATION-ANALYSIS-GUIDED FUZZING
3.1 Problem Statement and Scope
In this paper, we focus on the following problem:

Can we use mutation analysis to guide greybox fuzzing in order
to synthesize a test-input corpus with high mutation score?

Recently, Gopinath et al. [31] have identified and discussed sev-
eral challenges of combining mutation analysis with fuzzing, in-
cluding (1) the strength of oracles used by the fuzzer, (2) the compu-
tational expense of performing mutation analysis, (3) dealing with
equivalent mutants, and (4) the lack of mutation testing frameworks
that focus on fuzzers. We directly address such challenges in this
paper. Oracles are discussed in Section 3.3 and performance con-
cerns in Section 3.4. Our evaluation is not dependent on identifying
equivalent mutants, since we only care about relative mutation
scores (higher=better) rather than the exact number of mutants
killed by a test-input corpus. Section 3.4.2 deals with reducing the
performance impact of equivalent mutations.

Scope. Since there is a vast amount of literature on the many
variables involved in mutation analysis, as surveyed by Papadakis
et al. [63], we restrict ourselves in this paper to investigating only
the aspects of combining mutation analysis with greybox fuzzing.
In particular, we (1) work with the assumption that a high muta-
tion score is a desirable property of a test-input corpus used for
regression testing, referring the reader to several empirical stud-
ies examining the relationship between mutation scores and real
faults [2, 12, 15, 32, 39, 41, 64], and (2) directly use the default set of
mutation operators provided by PIT (ref. Section 2.2), which have
been chosen based on several empirical studies of effectiveness,
sufficiency, and to align with developer expectations [1, 17, 45, 57].

3.2 The Mu2 Framework
To address our problem statement, we present the mutation-
analysis-guided greybox fuzzing technique in Algorithm 2. This
is an extension of Alg. 1, with changes highlighted in grey. The
key additions of this algorithm are in evaluating whether a fuzzer-
generated input 𝑥 ′ should be saved to the corpus. The function
ProgMuts2Run (Line 8) returns a set of program mutants to eval-
uate with input 𝑥 ′. For now, assume it to return Mutants(P) as
defined in Section 2.2, though we will refine this in Section 3.4.2.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello Sanna, and Rohan Padhye

Algorithm 2 Mutation-analysis-guided fuzzing. Changes to Alg. 1
are highlighted.
1: procedure Mu2 (Program 𝑃 , Set of inputs seeds, Budget𝑇)
2: corpus← seeds
3: repeat
4: 𝑥 ← PickInput(corpus)
5: 𝑥 ′ ← MutateInput(𝑥)
6: if coverage(𝑃, 𝑥 ′) ⊈ ⋃

𝑥 ∈corpus coverage(𝑃, 𝑥) then
7: corpus← corpus ∪ 𝑥 ′

8: for all 𝑃 ′ ∈ ProgMuts2Run(𝑃, corpus, 𝑥 ′) do
9: if kills(𝑃 ′, 𝑥 ′) ∧ 𝑃 ′ ∉ killed(𝑃, corpus) then
10: corpus← corpus ∪ 𝑥 ′

11: until budget𝑇
12: return corpus
13: function killed(Program 𝑃 , Set of inputs X)
14: return {𝑃 ′ | 𝑃 ′ ∈ Mutants(𝑃) ∧ ∃𝑥 ∈ X : kills(𝑃 ′, 𝑥) }

We then determine whether the input 𝑥 ′ is the first input to kill
some mutant 𝑃 ′. If 𝑃 ′ is killed by 𝑥 ′ and 𝑃 ′ has not previously been
killed by any input in the corpus (Lines 9 and 14), then we add 𝑥 ′ to
the corpus (Line 10). Broadly, this algorithm saves fuzzer-generated
inputs if they increase either code coverage or mutation score. Addi-
tionally, inputs that increase mutation score are marked as favored,
giving them more energy to be picked for fuzzing (Line 4). As be-
fore, the final corpus of fuzzer-generated inputs is returned as the
result (Line 12).

We have implemented Algorithm 2 for fuzzing Java programs by
integrating PIT [17] into JQF [58]. We call this system Mu2, since it
combines Mutation-based Greybox Fuzzing with Mutation Testing.

We chose PIT and JQF because of their maturity, extensibility,
and their common target platform. As described in Section 2.2, PIT
is an actively developed mutation testing framework that operates
on JVM bytecode. The JQF framework [58] was originally designed
for coverage-guided property-based testing, which is a structure-
aware variant of greybox fuzzing (ref. Section 2.1) and instruments
JVM bytecode for collecting code coverage. JQF also has a highly
extensible design for creating pluggable guidances, which supports
rapid prototyping of new fuzzing algorithms [43, 55, 56, 59, 69, 74,
82].

In Mu2, Mutants(𝑃) includes all of PIT’s default expression
mutation operators (ref. Sections 2.2 and 3.1). For heuristics such as
PickInput andMutateInput, Mu2 reuses the logic and code from
Zest [59], which we also use as a baseline for evaluation (Section 4).

3.3 Oracle: Differential Mutation Testing
One challenge of mutation-analysis-guided fuzzing is determining
whether a program mutant is killed by a particular input. This
corresponds to the kills function invoked in line 9 of Algorithm 2.

In mutation testing, a program mutant 𝑃 ′ is considered killed if
any test in the test suite fails. The logic that determines whether a
test passes or fails is known as the test oracle.

Greybox fuzzing generally relies on implicit oracles, which aim
to detect anomalous behavior such as crashes or uncaught excep-
tions, or property tests, which assert a predicate over the output of
some computation. For example, consider the insertion sort method

1 class Sort {
2 static int[] insertionSort(int[] arr) {
3 for (int j = 1; j < arr.length; j++) {
4 int key = arr[j], i = j-1;
5 while (i >= 0 && // P'2 changes `>=` to `>`
6 key < arr[i]) {
7 arr[i+1] = arr[i]; // P'3 sets RHS to `1`
8 i = i-1; // P'4 removes `-1`
9 }
10 arr[i+1] = key; // P'1 removes `+1`
11 } return arr;
12 }}

Figure 2: Java program that implements insertion sort, anno-
tated with four sample program mutants.

defined in Figure 2 and the following test method, which is written
in the property-testing style using JQF’s @Fuzz annotation:
1 @Fuzz // Inputs generated using greybox fuzzing
2 void fuzzInsertionSort(int[] input) {
3 assert(isSorted(Sort.insertionSort(input)));
4 }

For Mu2, we could use this property test as an oracle. Con-
sider the following examples, using the notation introduced in
Section 2.2: executing mutant 𝑃 ′1 = ⟨Sort,i+1,i, 10⟩ with
input array 𝑥 = [3, 2, 1] would result in an uncaught
IndexOutOfBoundsException (-1) on line 10, triggering
a failure via the implicit oracle. Additionally, executing 𝑃 ′2 =

⟨Sort,i>=0,i>0, 5⟩ with 𝑥 would result in an assertion failure in
the property test because the result of 𝑃 ′2 (𝑥) would be the array [3,
1, 2], which is not sorted. So, both mutants 𝑃 ′1 and 𝑃

′
2 would get

killed by the fuzzer if it discovers such an input.
Unfortunately, the property test is not a complete oracle in that

it does not fully specify the expected behavior of the sort function.
Consider a third mutant 𝑃 ′3 = ⟨Sort,arr[i],1, 7⟩, which assigns
a constant to every array element at line 7. This is clearly a bug in
insertion sort, yet the output is always sorted. For example, when 𝑥
= [3, 2, 1], the result of 𝑃 ′3 (𝑥) is [1, 1, 1]. Such a mutant
would incorrectly survive on any input the fuzzer generates.

Writing a complete oracle for testing insertion sort is possible,
but quite cumbersome. In general, this is a hard problem [6]. For
many applications, a complete oracle would need to be as complex
(or in some cases exactly the same) as the original program itself.

In Mu2, we use the well-known concept of differential testing
to define our oracle. In differential testing [21, 53], different im-
plementations of a program that are expected to satisfy the same
specification are executed on a single input, and their results are
compared to identify discrepancies. In Mu2, our different "imple-
mentations" are the original program and program mutants; any
discrepancy between the original program output and a mutant’s
output leads to that mutant being killed.

To support the comparison of outputs, we create a differential
mutation testing framework. This allows for (1) output values to
be returned from a fuzzing driver (as opposed to the void returns
used by conventional property testing methods) and (2) a user-
defined comparison function for specifying how outputs from the
original program and a program mutant should be compared. An
example of differential mutation testing methods in our framework
is shown in Figure 3. The @Diff method runInsertionSort

Guiding Greybox Fuzzing with Mutation Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

1 @Diff // inputs generated by Mu2
2 int[] runInsertionSort(int[] input) {
3 return Sort.insertionSort(input);
4 }
5 @Compare // outputs compared with mutant
6 boolean checkEq(int[] outOrig, int[] outMut) {
7 return Arrays.equals(outOrig, outMut);
8 }

Figure 3: A Mu2 differential mutation test driver and com-
parison method for the insertionSortmethod (Fig. 2).

Table 1: Geometric mean of speedups achieved by the execu-
tion and infection based optimizations (Alg. 3, Line 4) from
the PIE model [38] across 10 repetitions of 3 hours each1.

Mean Speedup From: Execution Opt. Infection Opt.
ChocoPy 3.6× 7.4×
Gson 18.2× 23.2×

Jackson 60.5× 77.4×
Tomcat 13.6× 23.8×

returns an output value of type int[]. The user-defined com-
parison method checkEq simply determines if the output ar-
rays are equal. If unspecified, the @Compare function defaults to
the java.lang.Objects.equals() method. Our interface
is general enough to support complex differential testing oracles
such as the ones used in CSmith [79].

With differential mutation testing, we are able to kill mutants
such as 𝑃 ′3 described above with an input like [3, 2, 1], where
the output of insertionSort on the original program—[1, 2,
3]—is not equal to the output of the mutant—[1, 1, 1].

We can now precisely define Kills(𝑃 ′, 𝑥) which was referenced
in Algorithm 2. Given a mutant 𝑃 ′ = ⟨𝑃, 𝑒, 𝑒′, 𝑛⟩ and an input 𝑥 ,
Kills(𝑃 ′, 𝑥) returns true iff:
(1) 𝑃 (𝑥) = 𝑦 ∧ 𝑃 ′ (𝑥) = 𝑦′ ∧ ¬Compare(𝑦,𝑦′), where Compare

is the user-defined @Compare method (e.g., checkEq in Fig-
ure 3) or Object.equals() if one is not defined; or

(2) 𝑃 (𝑥) = 𝑦 but executing 𝑃 ′ (𝑥) results in an uncaught run-time
exception being thrown; or

(3) Executing 𝑃 ′ (𝑥) takes longer than a predefined TIMEOUT.
The timeout is required for killing mutants such as 𝑃 ′4 =

⟨Sort,i-1,i, 8⟩, which effectively removes the decrement of i,
leading to an infinite loop on the input [3, 1, 2].

We evaluate the improvement in completeness using the differ-
ential oracle over the greybox fuzzing implicit oracle in Section 4.4.

3.4 Performance
The biggest challenge with incorporating mutation testing inside
a fuzzing loop is performance. Given its need to execute many
mutants on each iteration, mutation testing is in general a very
expensive technique [63], so scaling Mu2 to real-world software
is a non-trivial task. Two aspects of improving scalability are: (1)
reducing the average time required to execute each programmutant,
and (2) reducing the number of program mutants that must be
evaluated at each iteration of the fuzzing loop.

Algorithm 3 Logic for determining which mutants to run in a
given iteration of the fuzzing loop (Alg. 2)
1: function ProgMuts2Run(Program 𝑃 , Old inputs corpus, New input 𝑥)
2: surviving ← mutants(𝑃) \ killed(𝑃, corpus)
3: killable← {𝑃 ′ = ⟨𝑃, 𝑒, 𝑒′, 𝑛⟩ | (𝑃 ′ ∈ surviving) ∧
4: (𝑛 ∈ coverage(𝑃, 𝑥)) ∧ (infect(𝑃, 𝑒, 𝑒′, 𝑥)) }
5: if AGGRESSIVE_OPT is configured then
6: return filter(killable,AGGRESSIVE_OPT)
7: return killable

3.4.1 Improving performance of mutant execution. When running
a mutation testing tool such as PIT [17], each mutant and test is run
in a different JVM. For general mutation testing, this is ideal because
it simplifies managing multiple copies of the same program (sans
mutations), and prevents global state changes from one program
mutant affecting the state of another program mutant. However,
this is not necessary for Mu2. For in-process fuzzing, test driver
methods are expected to be self-contained and not depend on global
state. Like JQF and Zest, Mu2 is designed to work in a single JVM.

Mu2 thus adopts a different strategy than PIT and takes advan-
tage of the Java class-loader mechanism to load and run program
mutants within the same JVM, essentially by having copies of the
entire class hierarchy (one per mutant) in memory at the same time.
First, aCoverageClassLoader (CCL) is responsible for loading
the original target program 𝑃 and collecting code coverage using
on-the-fly instrumentation. For differential testing, the CCL-loaded
classes compute the ground-truth outcome 𝑃 (𝑥). Second, a family
of MutationClassLoaders (MCL) are used to load program
mutants; one MCL per mutant 𝑃 ′ = ⟨𝑃, 𝑒, 𝑒′, 𝑛⟩. When a mutant
test program is loaded by the MCL, it performs on-the-fly bytecode
instrumentation exactly at location 𝑛, replacing expression 𝑒 with
𝑒′ and loading the rest of the program without changing semantics.
The MCL adds instrumentation at backward jumps (i.e., loops) in
order to detect timeouts and exit test execution cleanly if necessary.

Further, assuming that fuzz tests do not affect global state, Mu2
loads only one copy of each library class (defined as classes outside
a specified package identifying the target application as long as they
and their transitive dependencies do not reference any application
class) using a common SharedClassLoader—this dramatically
reduces memory pressure when mutating large programs.

To validate our design, we ran an informal preliminary exper-
iment of performing mutation analysis with PIT and Mu2’s in-
memory set-up on a fixed corpus of seed inputs for the Google
Closure Compiler [30]. In the steady state (after the first 8 inputs),
Mu2’s in-memory analysis runs with a 9.6× speed-up over PIT.

3.4.2 Reducing the number of mutants to run in the fuzzing loop.
For each trial—i.e., iteration of the fuzzing loop—(1) the input must
be executed once by the original program and (2) the input must
be executed by each mutant. Thus, we can model the time required
to execute each trial as the following:

trialTime = timeorig +𝑀 ∗ avgTimemut (1)
where𝑀 = |ProgMuts2Run(𝑃, corpus, 𝑥) | as per Algorithm 2.

1The Closure Compiler benchmark was too large to run without the execution and
infection optimizations, so we did not include the speedups in this table.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello Sanna, and Rohan Padhye

Observe that the time per trial scales linearly with 𝑀 . We can
improve the fuzzing throughput (i.e., the number of trials executed
per unit time) directly by reducing𝑀 . From Algorithm 2 (Lines 9–
10), we can see that we only care about executing a programmutant
if it will help us determine if a given input is the first input to kill it.
We can therefore reduce𝑀 by dynamically pruning mutants whose
execution will necessarily lead to Line 9 evaluating to false.

So, we begin by applying the following conditions for a given
𝑃 ′ = ⟨𝑃, 𝑒, 𝑒′, 𝑛⟩, which are shown in Algorithm 3, lines 2–4:

(1) If 𝑃 ′ ∈ killed(𝑃, corpus), then 𝑃 ′ does not need to be exe-
cuted for any future inputs.

(2) If the program mutant 𝑃 ′ applies a mutation to a program
location 𝑛, but 𝑛 is not covered when executing the original
program on𝑥 , then 𝑃 ′ cannot be killed by𝑥 . This corresponds
to execution-based pruning in the PIE model [38].

(3) If we can guarantee that all dynamic evaluations of 𝑒 during
the execution of 𝑃 on 𝑥 are equivalent to the corresponding
evaluations of mutated expression 𝑒′, then 𝑃 ′ cannot be
killed by 𝑥 . This corresponds to infection-based pruning in
the PIE model [38], which we implemented as a dynamic
analysis of the execution of the original program 𝑃 (𝑥).

The last two strategies from the PIE model require additional over-
head when executing 𝑥 : (1) the execution-based pruning depends on
coverage instrumentation, and (2) infection-based pruning requires
evaluating and comparing the mutation expression 𝑒 each time
that it is executed by 𝑥 . Referring to Equation 1, the optimization
results in a trade-off for trialTime due to the increase in timeorig
and decrease in the number of mutants to run𝑀 . However, we find
this is quite beneficial overall. Table 1 shows the results of prelim-
inary experiments on 4 benchmarks included in our evaluations
in Section 4 to validate these optimizations; clearly, they improve
performance significantly.

We note that all the pruning methods mentioned above are sound
optimizations: a mutant is pruned only if it is guaranteed to sur-
vive when executed. Effectively, we are pruning mutants that are
equivalent modulo inputs [47].

3.4.3 Aggressive mutant selection optimizations. While the execu-
tion and infection optimizations significantly improve the overall
throughput of Mu2, the𝑀 factor in Equation 1 still grows linearly
with the size of the program (more code = more mutants). We can
be aggressive about reducing 𝑀 by attempting to bound it by a
constant 𝑘 , at the risk of potentially missing out on analyzing some
mutants that could have been killed by a given input. We call these
aggressive optimizations. We use the function filter in Algorithm 3
(Line 6) to optionally apply a selection strategy [66, 73] that returns
a bounded subset of the killable mutants. We have implemented
two types of filters in Mu2:

(1) 𝑘-RandomMutant Filter: For each generated input,𝑘 mutants
are randomly sampled from the killable set in Alg. 3.

(2) 𝑘-Least-Executed Mutant Filter: For each generated input,
the killable mutants are sorted by the number of times they
have been executed on previous inputs. The first 𝑘 mutants
are then selected. The goal is to prioritize executing mutants
that have not been tested as frequently during the fuzzing

fuzzing campaign. This is a novel reduction strategy designed
specifically for the fuzzing loop.

Section 4.2 evaluates the impact of these aggressive optimizations.

4 EVALUATION
We evaluate Mu2 on 5 different Java program benchmarks, using
state-of-the-art coverage-guided fuzzer Zest [59] as the baseline.
We structure our evaluation around four research questions:
RQ1: Does mutation-analysis guidance produce a higher quality
test-input corpus than coverage-only feedback in greybox fuzzing?
RQ2: How do the performance optimizations impact the quality of
the test-input corpus produced by mutation-analysis guidance?
RQ3: How does the reliability of killing nontrivial mutants differ
between mutation-analysis guidance and coverage guidance?
RQ4: How much stronger is the differential mutation testing oracle
than the implicit oracle?

Benchmarks. We consider five real-world Java programs:2

(1) ChocoPy [7, 61] reference compiler (~6K LoC): The test driver
(reused from [74]) reads in a program in ChocoPy (a statically
typed dialect of Python) and runs the semantic analysis stage
of the ChocoPy reference compiler to return a type-checked
AST object.

(2) Gson [29] JSON Parser (~26K LoC): The test driver parses a
input JSON string and returns a Java object output.

(3) Jackson [22] JSON Parser (~49K LoC): The test driver acts
similar to that of Gson.

(4) Apache Tomcat [3] WebXML Parser (~10K LoC): The test
driver parses a string input and returns the WebXML repre-
sentation of the parsed output.

(5) Google Closure Compiler [30] (~250K LoC): The test driver
(reused from [59] and [74]) takes in a JavaScript program
and performs source-to-source optimizations. It then returns
the optimized JavaScript code.

Mutation selection. Following previous work on semantic
fuzzing [59, 74], we filter on package names to identify classes
relating to the core logic of the program under test. The mutation
operators are then applied on these classes. We use the same gen-
erators, oracles, and filters for both Zest and Mu2. All of the test
drivers return objects that override Object.equals, and were
thus properly compared by the differential oracle.

Duration. Following best practices [42], we use a time bound of
24 hours for each experiment.

Repetitions. To account for the randomness in fuzzing, we run
each experiment 20 times and report statistics.

Metrics. For our evaluations, we compute the branch coverage
and mutation scores across each fuzzer-generated test-input corpus.
We report mutation scores as the absolute number of mutants killed
instead of as a fraction (ref. Section 2.2), since we only care about
comparing these numbers across fuzzing variants, and since the
denominator is meaningless when considering a single test entry
point. We additionally compute the kill frequency of each of the

2While we note lines of code (LoC) for completeness, only a fraction of this code is
reachable from fuzz drivers. Fig. 5 indicates actual code coverage.

Guiding Greybox Fuzzing with Mutation Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Zest Mu2-
Default

Mu2-
Split

Mu2-
OPT

270

275

280

285

290

Ki
lle

d
M

ut
an

ts

ChocoPy

Zest Mu2-
Default

Mu2-
Split

Mu2-
OPT

280

290

300

310
Gson

Zest Mu2-
Default

Mu2-
Split

Mu2-
OPT

340

360

380

400

Jackson

Zest Mu2-
Default

Mu2-
Split

Mu2-
OPT

225

230

235

Tomcat

Zest Mu2-
Default

Mu2-
Split

Mu2-
OPT

230

240

250

260

270
Closure

Figure 4: Box plots showing the number of killed mutants by Zest and Mu2-generated test corpora across 20 repetitions of
24-hour fuzzing campaigns (higher is better). Mu2-Split and Mu2-OPT are two variants of Mu2 detailed in Section 4.1.

ChocoPy
(4856)

Gson
(645)

Jackson
(2217)

Tomcat
(990)

Closure
(30792)

Benchmark

0.00

0.25

0.50

0.75

1.00

Co
ve

ra
ge

 R
el

at
iv

e
to

 Z
es

t Branch Coverage

Zest
Mu2-Default
Mu2-Split
Mu2-OPT

Figure 5: Branch coverage across all benchmarks normal-
ized to the mean coverage achieved by Zest. The number of
branches covered by Zest (used to normalize) is listed below
each target. Error bars represent 95% confidence intervals.

nontrivial mutants across the repetitions.When reporting statistical
significance, a Mann-Whitney-U test was performed with 𝛼 = 0.05.

Default variant. Unless explicitly qualified with an aggressive
optimization strategy, the default variant of Mu2 used in our evalu-
ation only uses sound optimizations described in Section 3.4.2.

Reproducibility and Data Availability. We have included a repli-
cation package and evaluation data in the repository at: https:
//zenodo.org/record/7978404. The evaluation data contains logs
of fuzzing campaigns used to generate all evaluation figures and
tables.

4.1 RQ1: Test-Input Corpus Quality
Does mutation-analysis guidance produce a higher quality test-
input corpus than coverage-only feedback in greybox fuzzing?

RQ1 focuses on evaluating mutation-analysis-guided fuzzing
with a fixed time budget. Higher mutation score from the Mu2-
produced corpus and comparable coverage results would demon-
strate that mutation-analysis can be used as an off-the-shelf re-
placement for coverage-only guidance. We first discuss results for
Mu2-Default, then evaluate two variants against the Zest baseline.

Figure 4 visualizes the mutation scores for each fuzzer-generated
corpus. The default mutation-analysis guidance (Mu2-Default) is

able to produce a corpus with higher mutation scores than coverage-
only feedback in the first three benchmarks, achieving statistically
significant increases in all three. Additionally, Figure 5 shows equiv-
alent branch coverage between Zest and Mu2 for these benchmarks.
For the Tomcat WebXML parser, the number of killed mutants
saturated at 239 in almost all of the repetitions of the fuzzing cam-
paigns. For the Closure Compiler, our largest benchmark, the Mu2-
Default corpora achieve, on average, approximately 17% less branch
coverage than Zest (shown in Figure 5). This is likely due to the
performance overhead of running mutation analysis for a large
benchmark, and also likely accounts for the Zest corpora on aver-
age killing 12 more mutants than Mu2-Default, as covering code is a
necessary condition for killing mutants in that part of the code. This
suggests Mu2-Default may not scale well to very large programs.

One way to mitigate this slowdown is to add mutation-analysis
feedback to coverage-guided fuzzing later in the campaign. The
Mu2-Split variant utilizes coverage-only feedback for the first half
of the campaign (which is very efficient) and then introduces ex-
pensive mutation-analysis feedback for the second half. This is
based on an idea by Gopinath et al. [31], who suggested saturating
coverage before adding mutation analysis to the fuzzing loop. The
Mu2-Split-generated corpora show statistically significant increases
in mutation score over Zest for the first 4 benchmarks (Fig. 4), al-
though the effect for Tomcat is very small. There is also a major
improvement over Mu2-Default in the Closure benchmark; Mu2-
Split is able to bridge the gap in coverage (Fig. 5) and mutation
scores (Fig. 4) that Mu2-Default had with the Zest baseline.

Another method of scaling Mu2 is to apply the aggressive opti-
mizations detailed in Section 3.4.3. Mu2-OPT is a particular vari-
ant we chose that applies the k-Least-Executed filter with 𝑘 = 10
mutants. The Mu2-OPT generated corpus similarly achieves sta-
tistically significant increases in mutation scores across the first
four benchmarks over Zest, with up to 20% increase in the Jackson
JSON parser (Fig. 4). There is no significant difference between the
mutation scores of Mu2-OPT and Zest on the Closure Compiler.
Mu2-OPT achieves slightly less coverage than Zest on two bench-
marks (ChocoPy and Closure) and more on one (Jackson)—however,
the differences are fairly small (below 2%).

We are also curious about whether the additional saving of
mutant-killing inputs in Mu2 may bloat the size of the generated
test-input corpus, impacting its use in regression testing. Table 2
displays the average sizes and runtimes for each fuzzer-generated
corpus and show that no such bloat occurs in Mu2. While there

https://zenodo.org/record/7978404
https://zenodo.org/record/7978404

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello Sanna, and Rohan Padhye

Table 2: Average number of test inputs (and average runtime,
in parentheses below) of fuzzer-generated corpora. Corre-
sponding standard deviations also listed.

Zest Mu2-
Default

Mu2-
Split

Mu2-
OPT

ChocoPy 864 ± 34 711 ± 47 725 ± 36 746 ± 40
(18.6 s ± 2.1 s) (9.8 s ± 0.8 s) (11.7 s ± 1.3 s) (10.4 s ± 1.0 s)

Gson 467 ± 18 461 ± 17 469 ± 15 489 ± 21
(1.7 s ± 0.1 s) (1.7 s ± 0.1 s) (1.7 s ± 0.0 s) (1.7 s ± 0.0 s)

Jackson 598 ± 19 655 ± 16 641 ± 19 673 ± 15
(2.4 s ± 0.1 s) (2.4 s ± 0.1 s) (2.4 s ± 0.0 s) (2.4 s ± 0.1 s)

Tomcat 138 ± 7 122 ± 6 136 ± 6 171 ± 5
(2.6 s ± 0.1 s) (2.5 s ± 0.1 s) (2.6 s ± 0.1 s) (2.7 s ± 0.1 s)

Closure 4885 ± 205 1075 ± 219 4044 ± 146 4037 ± 192
(554 s ± 82 s) (58 s ± 13 s) (360 s ± 27 s) (353 s ± 30 s)

Table 3: Geometric mean of speedups achieved by each ag-
gressively filtered variant of Mu2 over Mu2-Default. 20/10/5
refer to the sizes of the filtered subset of mutants.

Random (20/10/5) LeastExecuted (20/10/5)
ChocoPy 1.1/1.7/2.8× 1.1/1.6/2.5×
Gson 0.9/1.1/1.3× 1.0/1.2/1.3×

Jackson 1.0/1.1/1.3× 1.1/1.0/1.2×
Tomcat 3.4/3.5/8.2× 2.3/6.0/7.9×
Closure 10.4/13.8/21.3× 13.8/19.2/24.9×

are some differences in the number of test inputs, the runtime of
the Mu2-produced corpora are not significantly higher than those
produced by Zest. Thus, mutation-analysis-guided fuzzing is able
to produce a higher quality test-input corpus and can be feasibly
used for regression testing.

We believe that an aggressively optimized version of mutation-
analysis-guided fuzzing can be used as a replacement for coverage-
guided fuzzing if the goal is to produce a test input corpus with high
mutation score. Mu2-OPT provides an improvement for 4 bench-
marks and scales to the largest target without paying a performance
penalty.

4.2 RQ2: Aggressive Optimizations
How do the performance optimizations impact the quality of
the test-input corpus produced by mutation-analysis guidance?

This RQ focuses on understanding the benefit of the aggressive
optimizations in mitigating the scalability concerns of Mu2-Default.
We created variants Mu2-LeastExecuted-𝑘 and Mu2-Random-𝑘 ,
each applying the corresponding filter described in Section 3.4.3,
and chose three different values of 𝑘 ∈ {5, 10, 20}.

First, we measure just the performance benefit. Table 3 shows
the speedups achieved—in terms of number of inputs evaluated
over a 24-hour period—by each variant over Mu2-Default. The
improvement for the benchmarks Gson and Jackson is relatively
minor due to the already small number of mutants executed for each
input after applying the execution and infection optimizations (ref.
Section 3.4.2 and Table 1). However, the aggressive optimizations
provide significant improvement for the larger benchmarks, with

280

285

290

Ki
lle

d
M

ut
an

ts

ChocoPy

280

290

300

Gson

392.5

395.0

397.5

400.0

402.5

405.0

407.5
Jackson

225

230

235

Tomcat

230

240

250

260

270

280

Closure

280

285

290

ki
lle

d

Variant (in order)
Mu2-Default
Mu2-Random-20
Mu2-LeastExecuted-20
Mu2-Random-10
Mu2-LeastExecuted-10
Mu2-Random-5
Mu2-LeastExecuted-5

Figure 6: Box plots showing number of killed mutants by
each aggressively optimized variant of Mu2 and the default,
across 20 repetitions of 24 hour campaigns (higher is better).

almost 25× speedup for the Mu2-LeastExecuted-5 variant on the
Closure benchmark. This makes sense, as the main purpose of
aggressive optimizations is to enable scaling to large programs.

Due to the aggressive nature of the mutant filtering, it is possible
that input candidates that do kill mutants are not saved simply
because those killable mutants were filtered. To determine whether
the speedup actually results in a test-input corpus with higher muta-
tion score, we must also measure the impact of these optimizations
on the mutation score of the generated corpus.

Figure 6 displays the mutation scores of all of the variants for
each of the 5 benchmarks. At least one optimized variant was bet-
ter than the default in all benchmarks. Somewhat surprisingly, we
observe similar mutation scores between the Mu2-LeastExecuted-𝑘
and Mu2-Random-𝑘 variants for the same value of 𝑘 in the first
four benchmarks. The one exception is Closure Compiler, where
Mu2-LeastExecuted-10 achieves a statistically significantly higher
mutation score than Mu2-Random-10. Again, the effect of aggres-
sive optimizations is most pronounced in the largest target.

Another interesting observation is that we can visualize the
trade-off between execution speed and mutation score in the Jack-
son benchmark: although the Mu2-Random-5 variant has a faster
execution speed than Mu2-Random-10 (Tab. 3) due to the smaller
number of mutants, the mutation score slightly decreases (Fig. 6)
since the optimization might skip some mutants at the wrong time.
Nonetheless, the speedup displayed by the variants for the Closure
Compiler results in better test-input corpus quality. All of the Mu2
variants are able to achieve statistically significantly higher muta-
tion scores than Mu2-Default. Specifically, Mu2-LeastExecuted-10,

Guiding Greybox Fuzzing with Mutation Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Mu2-Random-5, and Mu2-LeastExecuted-5 kill ∼15 more mutants
on average than Mu2-Default.

We found that Mu2-LeastExecuted-10 and Mu2-LeastExecuted-5
were the strongest variants, as they had a statistically significant
increase in mutation score over Mu2-Default in the most bench-
marks (3 out of 5) out of all variants. There was no significant
difference in mutation scores between these two variants in any
benchmarks, so we arbitrarily picked Mu2-LeastExecuted-10 as the
optimized version of mutation-analysis-guided fuzzing (Mu2-OPT)
in our evaluation of RQ1 and RQ4. We do however note for future
practitioners that the best aggressively optimized variant of Mu2
may change depending on the target program.

4.3 RQ3: Nontrivial Mutants
How does the reliability of killing nontrivial mutants differ
between mutation-analysis guidance and coverage guidance?

Not all mutants are equal—some mutants are easier to kill than
others. We define a mutant 𝑃 ′ = ⟨𝑃, 𝑒, 𝑒′, 𝑛⟩ as trivial if it is killed
by the first input that executes 𝑛 in every experiment (this is the
dynamic version of Kaufman et al.’s definition [40]). Since trivial
mutants are killed as soon as the corresponding code is covered,
conventional coverage-guided fuzzing like Zest suffices to capture
them. On the other hand, since nontrivial mutants may or may
not be killed even after the mutated expression is covered, we are
interested to know whether these get killed based on pure luck or
whether these get killed reliably across repetitions potentially due
to the guidance in the fuzzing algorithm. We measure reliability
by counting the number of repetitions in which each mutant is
killed. In particular, we study the difference in reliability of killing
nontrivial mutants between Zest and the best variant of Mu2.

Figure 7 is a histogram showing the difference in kill rate of
nontrivial mutants between Mu2-OPT and Zest. The values on the
right side (green) correspond to mutants killed more reliably by
Mu2-OPT than Zest. For the sake of visualization, the mutants with
no difference in kill rate (X-axis value 0) are excluded from the
charts.

Mu2-OPT is able to achieve a significantly higher kill frequency
of nontrivial mutants in ChocoPy and Jackson. In fact, there are
29 mutants in Jackson that are killed during all repetitions of
Mu2-OPT and zero repetitions of Zest. This is a strong indication
that mutation-analysis feedback can consistently discover mutant-
killing inputs that coverage-only feedback is incapable of finding.
For the Gson parser, there are 22 vs. 24 nontrivial mutants killed
more reliably by Zest and Mu2-OPT respectively, though the X-
axis values are generally higher for Mu2-OPT. For Closure, there
are over 60 mutants killed by at least one more repetition of Mu2-
OPT compared to the 4 by Zest. Overall, Mu2-OPT is able to kill
nontrivial mutants more reliably than Zest.

We also note that Figure 7 provides some insight into the di-
versity of mutants, particularly redundant mutants. By definition,
redundant mutants are grouped together in the same bars since
they are always killed at the same frequency. Flattening the size of
each bar to 1 removes at least all redundant mutants and acts as a
lower bound on the number of nonredundant mutants.

-20 -15 -10 -5 0 5 10 15 20
0

2

4

6

8

10

ChocoPy

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20
Gson

-20 -15 -10 -5 0 5 10 15 20
0

10

20

30

40
Jackson

-20 -15 -10 -5 0 5 10 15 20
0

1

2

3

4

5

6
Tomcat

-20 -15 -10 -5 0 5 10 15 20
Difference in Kill Frequency

(bars further right indicate higher reliability of Mu2)

0

10

20

30

40

50

Nu
m

be
r o

f M
ut

an
ts

Closure
Mu2-OPT
Zest

Figure 7: Histogram of difference in kill-rate of nontrivial
mutants between Zest and Mu2-OPT over 20 experiments.
X-axis is the difference in repetitions (ranging from -20 to
20), and Y-axis is the number of mutants. Larger positive dif-
ferences (right) are better for Mu2-OPT, and larger negative
differences (left) are better for Zest.

4.4 RQ4: Differential Mutation Testing
How much stronger is the differential mutation testing oracle
than the implicit oracle?

Described in Section 3.3, the differential mutation testing oracle
is responsible for determining whether an input kills a mutant by
comparing the outputs of the executions. We contrast it with the
incomplete greybox fuzzing implicit oracle, which only detects un-
caught exceptions or failed property checks. To study the strength
of the differential oracle, we evaluate the improvement in the num-
ber of killed mutants over the implicit oracle.

Figure 8 shows the difference in mutant kills across the bench-
marks with the two types of oracles. The differential oracle is able
to kill a significantly higher number of mutants across all 5 bench-
marks, with an average increase of 25%. In the ChocoPy benchmark,
over 85 more mutants are caught! This is because certain mutants
are unkillable by the implicit oracle due to their effect on program
behavior. We describe one of these mutants below. For brevity, we
describe the code functionality, omitting the actual code snippet.

The ChocoPy type-checker has a function to check that the
left and right operand types of an expression match when using
the “+" operator. If so, the type is returned and assigned to the
corresponding expression node in the output AST; otherwise, an

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello Sanna, and Rohan Padhye

ChocoPy Gson Jackson Tomcat Closure
Benchmark

0

100

200

300

400

Ki
lle

d
M

ut
an

ts
Strength of Oracle

Implicit
Differential

Figure 8: Number of killed mutants detected by the differen-
tial oracle vs. the implicit oracle across 20 repetitions of 24
hour campaigns with Mu2-Default (higher is better). Error
bars represent 95% confidence intervals.

error message for the expression is added to the output AST error
list. Consider a mutant 𝑃 ′ that modifies this function to return
null instead of the correct type. Executing 𝑃 ′ on the well-typed
ChocoPy program [1]+([2]+[3]) results in a type-checking
error, since the [int] type of [1] does not match the mutated
null return type of ([2]+[3]). The differential oracle kills 𝑃 ′
since the output AST produced by 𝑃 ′ contains a type error, whereas
𝑃 does not. The implicit oracle fails to kill this mutant since no
exceptions are triggered.

We conclude that the differential oracle is substantially stronger
than a traditional implicit oracle and is valuable for capturing a
larger set of mutant program execution behaviors.

5 THREATS TO VALIDITY
Threats to construct validity. First, the measurement of mutation

score is of course dependent on the set of mutation operators be-
ing applied to generate program mutants [62]. We aim to mitigate
this threat by using the default set of operators in the widely used
PIT framework, as justified in Section 3.1. Second, our test oracles
(ref. Section 3.3) report an outcome of TIMEOUT if a mutant execu-
tion does not terminate within a predefined limit. Such a bound is
necessary to catch infinite loops (e.g., for mutants that negate loop
conditions). However, if this bound is too small, then it is possible
in theory that some mutants could be marked as “killed” by a fuzzer-
generated input even if their execution would eventually produce
a correct output. To mitigate this threat, we compute the mutation
scores for the final test-input corpus by re-running saved inputs
on all program mutants using a larger timeout. We also manually
analyzed a sample of reported timeouts to confirm correspondence
to infinite loops—we found no false kills.

Threats to internal validity. Our evaluation uses mutation score
when comparing the quality of the generated test-input corpora
since our goal was to synthesize a test-input corpus with high
mutation score (ref. Section 3.1). We assume that a high mutation
score is a valuable objective for fuzzers. However, there is a potential
bias from using mutation score as an evaluation metric, as Mu2
benefits from incorporating mutation testing in the fuzzing loop.
Our results nevertheless capture the performance overhead impact

of mutation-analysis-guided fuzzing on mutation score and code
coverage.

Our implementation simply reused all the fuzzing hyperparame-
ters (e.g., PickInput andMutateInput in Algorithms 1 and 2) that
were set by the baseline Zest fuzzer. Tuning these heuristics could
affect our results, but the size of this search space is too large for
us to explore systematically. We stick with the baseline-provided
defaults for simplicity and make sure to use the same hyperparam-
eters for both Zest and Mu2 so that our conclusions are exclusively
based on the inclusion of mutation-analysis guidance in Mu2 only.

Threats to external validity. Since our implementation is based
on JQF [58] and PIT [17], which both target JVM bytecode, we
used Zest as the baseline. We do not know if our conclusions will
generalize to other programming languages or fuzzing platforms,
such as the family of tools based on AFL [80] and libFuzzer [49].
The available mutation testing infrastructure for C/C++ appears
to be less mature than that for Java/JVM. Another threat to exter-
nal validity arises from our selection bias in choice of benchmark
programs. Our targets have input and output formats which make
them amenable to differential mutation testing. This is not always
true for all applications that can be fuzzed—e.g., PDF viewers and
other programs whose output is graphical. The study of the general
test oracle problem [6] is outside the scope of this paper.

6 RELATEDWORK
Greybox fuzzing. The field of coverage-guided greybox fuzzing

has a vast literature, as surveyed by Manès et al. [52]; a more recent
and evolving publication list is maintained by Wen [77]. The ma-
jority of fuzzing research focuses on improving heuristics such as
seed-picking power schedules [9], input mutations [5, 48, 50], and
coverage feedback [14, 25]. FuzzFactory [60] generalizes the feed-
back of greybox fuzzing beyond code coverage to domain-specific
metrics that satisfy certain conditions. Our proposed mutation-
analysis guidance fits into this framework.

Greybox fuzzing for regression testing. A family of techniques
have been developed for directing fuzz testing towards specific
code locations [8, 13, 76] or code commits [83], which can be used
for identifying regressions. However, this still requires running a
full fuzzing campaign, which can take hours or days. In contrast,
we focus on synthesizing a high-quality test-input corpus which
can be quickly executed in CI—usually taking a few seconds or
minutes—as is often already practiced (ref. Section 1).

Guiding fuzzing with mutation testing. We first proposed the
idea of using mutation testing to augment greybox fuzzing in a
student research competition [46]; independently, Qian et al. [67]
published a similar idea at a regional symposium. However, we
believe the current paper is the first to thoroughly evaluate the
performance and scalability of incorporating mutation testing in
the fuzzing loop. In particular, we identified that the evaluation in
Qian et al.’s paper [67] uses an unsound comparison to the baseline
Zest; they use mutation analysis with multiple threads but run
Zest only single threaded for the same time bound, hence giving
higher CPU time to their technique and obscuring the effects of the
increased overhead of performing mutation testing. Additionally,
they use a selection strategy to choose 10 mutants at random, but

Guiding Greybox Fuzzing with Mutation Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

do not measure the impact on the overall mutation score, since
they never run all killable mutants. We were unable to perform a
head-to-head evaluation between Mu2 and their technique since
their implementation is not open source.

Using mutation testing in automated test generation. In a regis-
tered report, Groce et al. [33] propose fuzzing specially mutated
targets to find inputs triggering interesting control flow not in the
original program, and then use those inputs as seeds for coverage-
guided fuzzing. However, they do not target maximizing mutant
kills—for example, a mutant which only changes return codes gets
low fuzzing priority in their approach because it won’t affect con-
trol flow [33]. In contrast, Mu2 aims to find inputs that differentiate
program output on potentially semantics-altering mutants, which
often change data values but not necessarily control flow. Our ap-
proach is therefore orthogonal to Groce et al.’s and could potentially
even be combined.

`-test [24] and EvoSuite [23] are evolutionary test-generation
techniques that can use mutation scores as an objective as well
as a fitness function. `-test, which is based on Javalanche [70],
uses a form of differential testing to compare the coverage traces
of the original program and a mutant. Unlike these tools, which
generate unit test methods for exercising program API, greybox
fuzzing focuses on the generation of inputs for system testing, given
a fixed entry point.

Improving the performance of mutation testing. A lot of research
has been conducted to speed up mutation testing [18, 37, 63, 66, 73].
The approaches fall into three categories: (1) reducing the number
of mutants to generate, (2) pruning mutants to run on a given test,
and (3) speeding up mutant evaluation on a given test. For exam-
ple, many techniques have been developed to avoid generating
redundant or equivalent mutants [51]; we do not currently make
an attempt to identify these statically. Just et al. [39] introduce the
propagation, infection, execution (PIE) model to prune mutants that
are test-equivalent using dynamic analysis. Mu2 implements the
execution and infection optimizations from this work. MeMu [26]
speeds up PIT’s mutation analysis by memoizing unmutated meth-
ods with long execution time; this is a promising approach that
could be integrated into Mu2. Kaufman et al. [40] prioritize mu-
tants to reach test completeness faster. All these optimizations are
sound—they do not avoid analyzing mutants that may be killable.

Other research directions aim to reduce mutation-analysis costs
while potentially trading off soundness. For example, weak muta-
tion [35] has been proposed to terminate mutant evaluation quickly
by observing the intermediate state after executing the mutated pro-
gram locations. Many techniques have been developed formutation
reduction [63, 66, 73]—where only a subset of mutants are evaluated
based on some program-specific criteria. In this paper, we have
evaluated the random sampling approach and a novel least-executed
approach to mutant selection. Recently, Guizzo et al. [34] have
proposed an evolutionary approach to automate the generation
of optimal cost reduction strategies. Further, predictive mutation
testing [81] uses machine learning to estimate which mutants are
most likely to be killed. Incorporating such advanced models into
the Mu2 framework are promising directions for future work.

7 CONCLUSION
We investigated the challenges of incorporating mutation analysis
to guide greybox fuzzing. Our implementation, Mu2, integrates PIT
mutation testing into the JQF framework, and is aimed at producing
a test-input corpus with high mutation score. In our design, we in-
corporated a differential testing as an oracle for killing mutants and
proposed optimizations to improve fuzzing throughput by dynami-
cally pruning the number of mutants to be executed. We applied
both sound and aggressive optimizations for Mu2 to help scale it to
larger programs. After conducting a thorough evaluation on Mu2
and several variants, we found that mutation-analysis feedback can
improve the mutation score of a test-input corpus and more reliably
kill nontrivial mutants than coverage-guided fuzzing.

One of the challenges identified by Gopinath et al. [31] was to
“improve visibility of mutation analysis among fuzzing researchers.”
We hope our work increases awareness of mutation analysis tech-
niques in the fuzzing community and encourages other researchers
to develop more advanced hybrid techniques.

ACKNOWLEDGMENTS
This research was funded in part by NSF grant CCF-2120955, a seed
grant from CMU’s CyLab, and an Amazon Research Award.

REFERENCES
[1] Paul Ammann. 2015. Transforming mutation testing from the technology of the

future into the technology of the present. In International conference on software
testing, verification and validation workshops (ICST): Mutation workshop. IEEE.
https://mutation-workshop.github.io/2015/program/MutationKeynote.pdf

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate Tool
for Testing Experiments?. In Proceedings of the 27th International Conference on
Software Engineering (St. Louis, MO, USA) (ICSE ’05). Association for Computing
Machinery, 402–411. https://doi.org/10.1145/1062455.1062530

[3] Apache Foundation. 2022. Tomcat. https://github.com/apache/tomcat. Retrieved
August 31, 2022.

[4] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. Nautilus: Fishing for Deep
Bugs with Grammars. In 26th Annual Network and Distributed System Security
Symposium (NDSS ’19).

[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. 1–15.

[6] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[7] U. C. Berkeley. 2019. ChocoPy. https://chocopy.org/. Reference compiler JAR
retrieved on January 12, 2022.

[8] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344.

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 1032–1043.

[10] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliabil-
ity of Coverage-Based Fuzzer Benchmarking. In 44th IEEE/ACM International
Conference on Software Engineering (ICSE’22). to appear.

[11] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In 2015 IEEE Symposium on Security and Privacy. IEEE, 725–
741.

[12] Thierry Titcheu Chekam,Mike Papadakis, Yves Le Traon, andMarkHarman. 2017.
An empirical study on mutation, statement and branch coverage fault revelation
that avoids the unreliable clean program assumption. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 597–608.

[13] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2095–2108.

[14] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.

https://mutation-workshop.github.io/2015/program/MutationKeynote.pdf
https://doi.org/10.1145/1062455.1062530
https://github.com/apache/tomcat
https://doi.org/10.1109/TSE.2014.2372785
https://chocopy.org/

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello Sanna, and Rohan Padhye

[15] Yiqun T. Chen, Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid
Holmes, Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the Re-
lationship between Fault Detection, Test Adequacy Criteria, and Test Set Size.
In Proceedings of the 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing
Machinery, 237–249. https://doi.org/10.1145/3324884.3416667

[16] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP).

[17] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java. In Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis
(ISSTA’16). 449–452.

[18] Fabiano Cutigi Ferrari, Alessandro Viola Pizzoleto, and Jeff Offutt. 2018. A Sys-
tematic Review of Cost Reduction Techniques for Mutation Testing: Preliminary
Results. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). 1–10. https://doi.org/10.1109/ICSTW.2018.00021

[19] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (1978), 34–41. https:
//doi.org/10.1109/C-M.1978.218136

[20] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs.
In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR). IEEE, 131–142.

[21] Robert B Evans and Alberto Savoia. 2007. Differential testing: a new approach
to change detection. In The 6th Joint Meeting on European software engineering
conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering: Companion Papers. 549–552.

[22] FasterXML. [n. d.]. Jackson: JSON for Java. https://github.com/FasterXML/
jackson. Retrieved August 31, 2022.

[23] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11).

[24] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven Generation of Unit
Tests and Oracles. In Proceedings of the 19th International Symposium on Software
Testing and Analysis (Trento, Italy) (ISSTA ’10). ACM, 147–158. https://doi.org/
10.1145/1831708.1831728

[25] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data flow sensitive fuzzing. In 29th USENIX
Security Symposium (USENIX Security 20). 2577–2594.

[26] Ali Ghanbari and Andrian Marcus. 2022. Faster Mutation Analysis with MeMu.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (Virtual, South Korea) (ISSTA 2022). 781–784. https://doi.
org/10.1145/3533767.3543288

[27] John B Goodenough and Susan L Gerhart. 1975. Toward a theory of test data
selection. IEEE Transactions on software Engineering 2 (1975), 156–173.

[28] Google. 2019. Ideal integration with OSS-Fuzz. https://google.
github.io/oss-fuzz/advanced-topics/ideal-integration/#regression-testing.
https://web.archive.org/web/20200301084941/https://google.github.io/oss-
fuzz/advanced-topics/ideal-integration/#regression-testing Retrieved August 31,
2022.

[29] Google. 2021. Gson: A Java serialization/deserialization library to convert Java
Objects into JSON and back. https://github.com/google/gson. Retrieved August
31, 2022.

[30] Google. 2022. Google Closure Compiler. https://github.com/google/closure-
compiler. Retrieved August 31, 2022.

[31] Rahul Gopinath, Philipp Görz, and Alex Groce. 2022. Mutation Analysis: An-
swering the Fuzzing Challenge. CoRR abs/2201.11303 (2022). arXiv:2201.11303
https://arxiv.org/abs/2201.11303

[32] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How Close
are they to Real Faults?. In 2014 IEEE 25th International Symposium on Software
Reliability Engineering. 189–200. https://doi.org/10.1109/ISSRE.2014.40

[33] Alex Groce, Goutamkumar Tulajappa Kalburgi, Claire Le Goues, Kush Jain, and
Rahul Gopinath. 2022. Registered Report: First, Fuzz the Mutants. In International
Fuzzing Workshop (FUZZING’22).

[34] Giovani Guizzo, Federica Sarro, Jens Krinke, and Silvia R. Vergilio. 2022. Sentinel:
A Hyper-Heuristic for the Generation of Mutant Reduction Strategies. IEEE
Transactions on Software Engineering 48, 3 (2022), 803–818. https://doi.org/10.
1109/TSE.2020.3002496

[35] William E. Howden. 1982. Weak mutation testing and completeness of test sets.
IEEE Transactions on Software Engineering SE-8, 4 (1982), 371–379.

[36] Laura Inozemtseva and Reid Holmes. 2014. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th international conference on
software engineering (ICSE’14). 435–445.

[37] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[38] René Just, Michael D Ernst, and Gordon Fraser. 2014. Efficient mutation analysis
by propagating and partitioning infected execution states. In Proceedings of the

2014 International Symposium on Software Testing and Analysis (ISSTA’14). 315–
326.

[39] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’14). 654–665.

[40] Samuel J. Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann,
and René Just. 2022. Prioritizing Mutants to Guide Mutation Testing. In Pro-
ceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, 1743–1754.
https://doi.org/10.1145/3510003.3510187

[41] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos
Malevris, and Yves Le Traon. 2018. How effective are mutation testing tools? An
empirical analysis of Java mutation testing tools with manual analysis and real
faults. Empirical Software Engineering 23, 4 (2018), 2426–2463.

[42] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[43] James Kukucka, Luís Pina, Paul Ammann, and Jonathan Bell. 2022. CONFETTI:
Amplifying Concolic Guidance for Fuzzers. In 44th IEEE/ACM International Con-
ference on Software Engineering (ICSE’22). to appear.

[44] Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce. 2019. Cover-
age guided, property based testing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–29.

[45] Thomas Laurent, Mike Papadakis, Marinos Kintis, Christopher Henard, Yves
Le Traon, and Anthony Ventresque. 2017. Assessing and improving the mutation
testing practice of PIT. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 430–435.

[46] Isabella Laybourn. 2022. `2 : Using Mutation Analysis to Guide Mutation-Based
Fuzzing. In Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings (Pittsburgh, Pennsylvania) (ICSE ’22). As-
sociation for Computing Machinery, 331–333. https://doi.org/10.1145/3510454.
3522682

[47] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via
Equivalence modulo Inputs. In Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’14). 216–226.
https://doi.org/10.1145/2594291.2594334

[48] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475–485.

[49] LLVM Compiler Infrastructure. 2016. libFuzzer. https://llvm.org/docs/LibFuzzer.
html. Accessed February 11, 2022.

[50] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized mutation scheduling for fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19). 1949–1966.

[51] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2013.
Overcoming the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation. IEEE Transactions on Software
Engineering 40, 1 (2013), 23–42.

[52] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering
(2019).

[53] William M. McKeeman. 1998. Differential Testing for Software. DIGITAL TECH-
NICAL JOURNAL 10, 1 (1998), 100–107.

[54] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (dec 1990), 32–44.
https://doi.org/10.1145/96267.96279

[55] Hoang Lam Nguyen and Lars Grunske. 2022. BeDivFuzz: Integrating Behav-
ioral Diversity into Generator-based Fuzzing. In 44th IEEE/ACM International
Conference on Software Engineering (ICSE’22). to appear.

[56] Hoang Lam Nguyen, Nebras Nassar, Timo Kehrer, and Lars Grunske. 2020. Mo-
Fuzz: A fuzzer suite for testing model-driven software engineering tools. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1103–1115.

[57] A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian
Zapf. 1996. An experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology (TOSEM) 5, 2 (1996), 99–
118.

[58] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-guided
Property-based Testing in Java. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA’19). 398–401.
https://doi.org/10.1145/3293882.3339002

[59] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (Beijing, China)
(ISSTA 2019). ACM, 329–340. https://doi.org/10.1145/3293882.3330576

https://doi.org/10.1145/3324884.3416667
https://doi.org/10.1109/ICSTW.2018.00021
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/3533767.3543288
https://doi.org/10.1145/3533767.3543288
https://google.github.io/oss-fuzz/advanced-topics/ideal-integration/#regression-testing
https://google.github.io/oss-fuzz/advanced-topics/ideal-integration/#regression-testing
https://web.archive.org/web/20200301084941/https://google.github.io/oss-fuzz/advanced-topics/ideal-integration/#regression-testing
https://web.archive.org/web/20200301084941/https://google.github.io/oss-fuzz/advanced-topics/ideal-integration/#regression-testing
https://github.com/google/gson
https://github.com/google/closure-compiler
https://github.com/google/closure-compiler
https://arxiv.org/abs/2201.11303
https://arxiv.org/abs/2201.11303
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/TSE.2020.3002496
https://doi.org/10.1109/TSE.2020.3002496
https://doi.org/10.1145/3510003.3510187
https://doi.org/10.1145/3510454.3522682
https://doi.org/10.1145/3510454.3522682
https://doi.org/10.1145/2594291.2594334
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3330576

Guiding Greybox Fuzzing with Mutation Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[60] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: domain-specific fuzzing with waypoints. Pro-
ceedings of the ACM on Programming Languages 3, OOPSLA, Article 174 (2019),
29 pages. https://doi.org/10.1145/3360600

[61] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy: A Program-
ming Language for Compilers Courses. In Proceedings of the 2019 ACM SIGPLAN
Symposium on SPLASH-E (Athens, Greece) (SPLASH-E 2019). Association for
Computing Machinery, 41–45. https://doi.org/10.1145/3358711.3361627

[62] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the validity of mutation-based test assessment. In Proceedings of
the 25th International Symposium on Software Testing and Analysis. 354–365.

[63] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[64] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are
mutation scores correlated with real fault detection? a large scale empirical study
on the relationship between mutants and real faults. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 537–548.

[65] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan
Caciulescu, and Abhik Roychoudhury. 2019. Smart greybox fuzzing. IEEE Trans-
actions on Software Engineering (2019).

[66] Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and
Márcio Ribeiro. 2019. A systematic literature review of techniques and metrics to
reduce the cost of mutation testing. Journal of Systems and Software 157 (2019),
110388.

[67] Ruixiang Qian, Quanjun Zhang, Chunrong Fang, and Lihua Guo. 2022. Inves-
tigating Coverage Guided Fuzzing with Mutation Testing. In Proceedings of the
13th Asia-Pacific Symposium on Internetware (Hohhot, China) (Internetware ’22).
Association for Computing Machinery, 272–281. https://doi.org/10.1145/3545258.
3545285

[68] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing seed selection
for fuzzing. In 23rd USENIX Security Symposium (USENIX Security 14). 861–875.

[69] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020.
Quickly generating diverse valid test inputs with reinforcement learning. In
2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 1410–1421.

[70] David Schuler and Andreas Zeller. 2009. Javalanche: Efficient Mutation Testing
for Java. In Proceedings of the 7th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). Association
for Computing Machinery, 297–298. https://doi.org/10.1145/1595696.1595750

[71] SQLite Authors. 2019. How SQLite is Tested. https://www.sqlite.org/testing.html#
the_fuzzcheck_test_harness. https://web.archive.org/web/20200427011538/https:
//www.sqlite.org/testing.html#the_fuzzcheck_test_harness Retrieved August 31,
2022.

[72] The OpenSSL Project. 2016. Run the fuzzing corpora as tests. https://github.
com/openssl/openssl/commit/90d28f05. https://github.com/openssl/openssl/
tree/openssl-3.0.0/fuzz/corpora Retrieved August 31, 2022.

[73] Macario Polo Usaola and Pedro Reales Mateo. 2010. Mutation Testing Cost
Reduction Techniques: A Survey. IEEE Software 27, 3 (2010), 80–86. https:
//doi.org/10.1109/MS.2010.79

[74] Vasudev Vikram, Rohan Padhye, and Koushik Sen. 2021. Growing A Test Corpus
with Bonsai Fuzzing. In 43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 723–735. https:
//doi.org/10.1109/ICSE43902.2021.00072

[75] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In 41st International Conference on Software Engineering
(ICSE ’19).

[76] Pengfei Wang, Xu Zhou, Kai Lu, Tai Yue, and Yingying Liu. 2022. SoK: The
progress, challenges, and perspectives of directed greybox fuzzing. arXiv preprint
(2022). https://doi.org/10.48550/arXiv.2005.11907

[77] Cheng Wen. 2022. Recent Papers Related To Fuzzing. https://wcventure.github.
io/FuzzingPaper/. Retrieved March 16, 2022.

[78] Elaine J Weyuker. 1986. Axiomatizing software test data adequacy. IEEE transac-
tions on software engineering 12 (1986), 1128–1138.

[79] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation (PLDI ’11). Association for
Computing Machinery, 283–294. https://doi.org/10.1145/1993498.1993532

[80] Michal Zalewski. 2014. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.
Accessed February 11, 2022.

[81] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2018. Predictive mutation testing. IEEE Transactions on Software Engineering 45,
9 (2018), 898–918.

[82] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung
Kim. 2020. Bigfuzz: Efficient fuzz testing for data analytics using framework ab-
straction. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 722–733.

[83] Xiaogang Zhu and Marcel Böhme. 2021. Regression Greybox Fuzzing. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing
Machinery, 2169–2182. https://doi.org/10.1145/3460120.3484596

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1145/3360600
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3545258.3545285
https://doi.org/10.1145/3545258.3545285
https://doi.org/10.1145/1595696.1595750
https://www.sqlite.org/testing.html#the_fuzzcheck_test_harness
https://www.sqlite.org/testing.html#the_fuzzcheck_test_harness
https://web.archive.org/web/20200427011538/https://www.sqlite.org/testing.html#the_fuzzcheck_test_harness
https://web.archive.org/web/20200427011538/https://www.sqlite.org/testing.html#the_fuzzcheck_test_harness
https://github.com/openssl/openssl/commit/90d28f05
https://github.com/openssl/openssl/commit/90d28f05
https://github.com/openssl/openssl/tree/openssl-3.0.0/fuzz/corpora
https://github.com/openssl/openssl/tree/openssl-3.0.0/fuzz/corpora
https://doi.org/10.1109/MS.2010.79
https://doi.org/10.1109/MS.2010.79
https://doi.org/10.1109/ICSE43902.2021.00072
https://doi.org/10.1109/ICSE43902.2021.00072
https://doi.org/10.48550/arXiv.2005.11907
https://wcventure.github.io/FuzzingPaper/
https://wcventure.github.io/FuzzingPaper/
https://doi.org/10.1145/1993498.1993532
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3460120.3484596

	Abstract
	1 Introduction
	2 Background
	2.1 Greybox Fuzzing and Corpus Generation
	2.2 Mutation Testing

	3 Mutation-Analysis-Guided Fuzzing
	3.1 Problem Statement and Scope
	3.2 The Mu2 Framework
	3.3 Oracle: Differential Mutation Testing
	3.4 Performance

	4 Evaluation
	4.1 RQ1: Test-Input Corpus Quality
	4.2 RQ2: Aggressive Optimizations
	4.3 RQ3: Nontrivial Mutants
	4.4 RQ4: Differential Mutation Testing

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

